1 Problem set 6

1)

Consider the modified prisoner's dilemma game and the suggested SPNE (play C in periods $1, \ldots, \mathrm{~T}-1$ and P in period T if the play is (C, C) up to that point, otherwise play (D, D) for the rest of the game)
a) show that it does not pay to deviate in period T
b) show that it does not pay to deviate in period T-1
c) show that it does not pay to deviate in any period t $<$ T-1
d) find other SPNE's (there are a lot!)
e) replace the 7 for (D,C) with 10 . Find the minimum number of repetitions such that there is a SPNE where (C,C) is played in the first period.
a) of course it doesn't, P, P is a Nash equilibrium (i.e. there is no profitable deviation)
b) payoff in equilibrium $\pi=5+3$
if I deviate the other player plays D in period T , so $\pi^{\prime}=7+0$
since $\pi>\pi^{\prime}$ it does not pay to deviate
c) payoff in equilibrium $\pi=5+5+3$
if I deviate the other player plays D in all subsequent periods, so $\pi^{\prime}=7+0+0$
since $\pi>\pi^{\prime}$ it does not pay to deviate
same is true for any period $t<T-1$
d) for example, if $T=5$ consider following SPNE
start with (C,D) in first period and play (C,C) in the second until the last period. In last period play (P,P)
if there is a deviation play D for ever
This is a SPNE since noone wants to deviate.
e) $\operatorname{minimum~} T=3$
because if $T=1$ then it's just a one shot game
if $T=2$ the punishment from paying (D, D) instead of (P, P) is not big enough to deter a player from defecting in the previous period
2) Consider Bertrand competition with demand $\mathrm{D}=20-\mathrm{p}$, constant marginal cost of 0 and two firms. Let prices be constrained to integers.
a) Show that the stage game has two Nash-equilibria.
b) Now consider the game to be repeated T times. Show that there is a SPNE where both firms set the monopoly price $p^{m}=10$ up to $t=T-3$.
a) There are two equilibria,
$p=0$ and $p=1$
At any of these prices it does not pay to deviate.
b) for example set $p_{t}=10$ for $t \leq T-3$
$p_{T-2}=4$
$p_{T-1}=2$
$p_{T}=1$
If anyone deviates then $p_{t}=0$ for all t
3) Osborne 429.1
the condition is
$x+\delta x+\delta^{2} x+\ldots \geq y+\delta+\delta^{2}+\ldots$
$x\left(1+\delta+\delta^{2}+\ldots\right) \geq y-1+\left(1+\delta+\delta^{2}+\ldots\right)$
$x \frac{1}{1-\delta} \geq y-1+\frac{1}{1-\delta}$
$x \geq(y-1)(1-\delta)+1$
$\frac{x-1}{y-1} \geq 1-\delta \Rightarrow \frac{y-x}{y-1} \leq \delta$

