EC3324 Autumn, Lecture \#08 Extensive Games with Imperfect Information

- Reading
- Osborne, Chapter 10
- Learning outcomes
- describe an extensive form game with imperfect information
- be familiar with the concept of a signalling game
- understand the basic idea of a (weak) Perfect Bayesian Equilibrium
- If a player in an extensive game does not know the history by the time he chooses, the game is one of imperfect information
- we can mark what a player knows at the time he moves with an information set (consists of indistinguishable histories)
- Player 2 knows that he is in the information set, but not in which specific node
- Hence Player 2's strategy cannot condition on Player 1's choice, but a strategy has to prescribe a move for each information set

Note: What can an info set NOT look like

Player 1

\leftarrow drunk driver!

- Games like the one below can be treated like a simultaneous move game
- Player 2 chooses with knowledge as if players choose simultaneously
- We can then consider Nash-equilibria as for simultaneous move games

- But the situation differs if Player 2 knows something about Player 1's move, but not always everything
- Here Player 2 knows whether Player 1 has chosen right or not, so can condition on some knowledge, but does not always know the history

- Example: Market Entry Game
- Challenger can enter prepared for fight or unprepared
- Incumbent only knows whether Challenger enters or not, but not whether he is prepared for fight
- Nash equilibria?
- (Unready, Acquiesce) and (Out, Fight)

- (Out, Fight) is not convincing:
- Incumbent prefers Acquiesce both after Ready and Unready
- Considering subgame perfect equilibrium does not help:
- The only subgame is the game itself
- Intuitively, if you cut a subgame at its starting node it should "fall" from the tree, not hang by an info set
- So both (Unready, Acquiesce) and (Out, Fight) are subgame perfect equilibria
- Want to generalize idea of sequential rationality to such games

Generalizing sequential rationality

Definition: Belief system: assigns to each information set a probability distribution over the histories in that information set

Definition: weak Perfect Bayesian equilibrium:

- combination of strategies and beliefs that satisfy:
- sequential rationality: each player's strategy is optimal whenever she has to move given belief and other's strategies
- consistency of beliefs: each player's beliefs are consistent with the strategy profile

weak Perfect Bayesian Equilibrium

- consistency of beliefs requires in particular:
- in any history that is reached with positive probability given the strategy profile, belief is formed following Bayes' rule:
- for any strategy profile B and history h^{*} in information set I, the belief is given by
$-\operatorname{Pr}_{B}\left(h^{*} \mid I\right)=\operatorname{Pr}_{B}\left(h^{*}\right) / \operatorname{Pr}_{B}(I)=\operatorname{Pr}_{B}\left(h^{*}\right) / \sum_{h \text { in } I} \operatorname{Pr}_{B}(h)$
- For information sets that are reached with probability 0, beliefs are arbitrary
- Perfect Bayesian equilibrium adds further requirements that assure subgame perfection (e.g. by requiring that explicitly)
- Now consider again the market entry game
- For any belief Acquiesce is optimal
- Hence in any wPBE Incumbent has to choose Acquiesce
- So the only wPBE is (Unready, Acquiesce)

Signalling Games

- Apply the idea of a Bayesian game to extensive form games:
- Nature chooses the type of (at least) one player, say Player 1
- Player 1 observes his own type
- Player 2, before choosing, does not observe the type of Player 1 but does observe the actions of Player 1
- Put differently, Player 2 does not observe Nature's action, so this is an extensive game with imperfect information

Signalling Games

- This implies the opportunity for signalling: Player 1 can reveal his type through an action
- often, one type will want to reveal his type, the other wants to hide it and will want to imitate the other type
- if imitating is cheap, we have pooling equilibria: all types choose the same action
- if imitating is too costly, there can be separating equilibria: different types choose different actions and the action reveals the type

Entry as signaling game (challenger's payoff on top)

- Note first that the weak challenger prefers unready whatever action the incumbent takes, so in any wPBE the weak challenger must choose unready
- That leaves two possibilities for equilibria:

1. Strong challenger chooses ready (separating equilibrium)
2. Strong challenger chooses unready (pooling equilibrium)

- Consider 1: Strong challenger chooses ready
- both information sets of incumbent are reached
- beliefs are hence given by Bayes' rule
- thus $\operatorname{Pr}($ strong \mid ready $)=\operatorname{Pr}($ weak \mid unready $)=1$
- thus incumbent chooses acquiesce after ready and fight after unready
- no type has an incentive to deviate so this is a (separating) wPBE (for any p)
- Consider 2: Strong challenger chooses unready
- only bottom information set (unready) of incumbent is reached
- beliefs here are given by Bayes' rule
- \quad thus $\operatorname{Pr}($ strong \mid unready $)=p ; \operatorname{Pr}($ weak \mid unready $)=1-p$
$-\mathrm{E}(\mathrm{A} \mid$ unready $)=0 ; \mathrm{E}(\mathrm{F} \mid$ unready $)=-p+1-p=1-2 p$
$-\mathrm{E}(\mathrm{A} \mid$ unready $) \geq \mathrm{E}(\mathrm{F} \mid$ unready $) \Leftrightarrow 0 \geq 1-2 p \Leftrightarrow p \geq 1 / 2$
- we also need to specify strategy given unready, although it's never reached, to check if challenger would want to deviate
- since probability of unready is 0 , beliefs are not restricted
- now, if incumbent chooses acquiesce after unready, no type of challenger would want to deviate, irrespective of what the incumbent would choose after ready
- So if $p \geq 1 / 2$, there are (pooling) wPBE where both types of challengers choose unready, incumbent chooses acquiesce after unready and something consistent with the (arbitrary) belief after ready
- Now consider: Strong challenger chooses unready, but $p \leq 1 / 2$
- then fight is best response of incumbent after unready
- if incumbent chose acquiesce after ready, then strong challenger would prefer to deviate
- so incumbent must choose fight after ready (at least with probability $\geq 1 / 2$)
- this requires for incumbent's belief: $\operatorname{Pr}($ strong \mid ready $) \leq 1 / 2$
- ready occurs with probability 0 , so beliefs are not restricted
- So if $p \leq 1 / 2$, there are (pooling) wPBE where both types of challengers choose unready, incumbent chooses fight after both unready and ready and believes the challenger to be strong with probability $\leq 1 / 2$ after both unready and ready
- This class of equilibria does not survive refinements such as the intuitive criterion
- the argument is that the weak challenger would never want to deviate to ready, undermining the belief $\operatorname{Pr}($ strong \mid ready $) \leq 1 / 2$)

Problem set \#08

Suggested problems (with solutions on the book's website)

1. Osborne Ex 316.1
2. Osborne Ex 318.2
3. Osborne Ex 331.2
