
EC3324 Autumn Lecture #07

Strategic Games with Imperfect Information

• Reading

– Osborne, Chapters 9, 3.5

• Learning outcomes

– understand the concept of a Bayesian game

– find the equilibrium of a Bayesian game

– be familiar with simple auction formats



• So far, we have considered games of complete information:
all players know the preferences of all others

• We now consider situations, where players have incomplete
information: they do not know some relevant characteristic of
other players. This may include the payoffs, the actions, and
the beliefs

• Following Harsanyi’s 1967-68 trilogy (led to 1994 Nobel
Prize) we model such situations as games of imperfect
information => Bayesian games
– See R. Myerson’s (another Nobel prize here) great essay for details

(http://home.uchicago.edu/~rmyerson/research/harsinfo.pdf)

• In a Bayesian game there are different types of the players
(more precisely of at least one of the players) and players know
their own type but not the type of the other players

Incomplete Information and Bayesian Games



Nobel Prize in Economics, 1994

• Reinhard Selten (left) - subgame
perfection, John Harsanyi (right) -
imperfect information and…



John F. Nash (not only developed the homonymous equilibrium concept but has also

beaten the emperor of Rome in “Gladiator”)



Example: Prisoner’s dilemma
If Player 1 faces a selfish Player 2, then the game is

         Player 2

C(ooperate) D(efect)

Player 1 C(ooperate) 2,2 0,3

D(efect) 3,0 1,1

But Player 2 might also be a cooperative type, who likes to
cooperate, then the payoff matrix could be, for example

         Player 2

C(ooperate) D(efect)

Player 1 C(ooperate) 2,3 0,2

D(efect) 3,1 1,0

In either case, however, D is a dominant strategy for Player 1



Example: Prisoner’s dilemma
Now assume that Player 1 herself is not selfish, but a conditional

cooperator, i.e. she likes to cooperate as long as others do.

Then if Player 2 is selfish, the matrix is, e.g.,

         Player 2

C(ooperate) D(efect)

Player 1 C(ooperate) 3,2 0,3

D(efect) 2,0 1,1

But if Player 2 is cooperative, the payoff matrix is, e.g.

         Player 2

C(ooperate) D(efect)

Player 1 C(ooperate) 3,3 0,2

D(efect) 2,1 1,0

It now matters which type of Player 2 Player 1 believes to face



Example: Prisoner’s dilemma
• Intuitively, in a Nash-equilibrium of such a game, each type of

Player 2 should play a best response against Player 1 and
Player 1 a best response against his belief about the type he
faces and the actions of both types

• Let the probability for Player 2 to be type 1 (selfish) be p

• Then the expected payoff for Player 1 is

Player 2 (a2(t1), a2( t2))

(C,C) (C,D) (D,C) (D,D)

Player 1 C 3 3p 3(1-p) 0

D 2 2p+(1-p) p+2(1-p) 1

• In Tables on previous slides, we see that for type 1 of Player 2, D is
dominant, and for type 2, C is dominant.

• Player 1’s best response to (D,C) is C if p <1/2 and D if p >1/2

• Nash equilibria: (C,(D,C)) if p <1/2 and (D,(D,C)) if p >1/2

• For p =1/2, Player 1 is indifferent, so we get arbitrary mixing



A Bayesian game captures the ideas from the above example. It
consists of

• a set of players

• a set of states

and for each player

• a set of actions

• a set of signals, where each state is assigned a signal (though
several states may be assigned the same signal)

• for each signal a belief about the states consistent with this
signal

• a Bernoulli payoff function over pairs (a,w) where a is an
action profile and w a state (so that preferences over lotteries
over such pairs are represented by the expected payoff)

We can understand this as a player “nature” drawing the types
and the players not being perfectly informed about nature’s
moves

This links a Bayesian game to the analysis of extensive games
with imperfect information to be discussed in lecture 8.

Bayesian games



• Players and actions as standard Prisoner’s Dilemma

• Set of two states, characterized by Player 2’s preferences:
{selfish, cooperative}

• Player 1 receives the same signal in both states, so the signal is
not informative

• Player 2 receives a signal informing her about her preferences

• Player 1 assigns probability p to state selfish , 1 – p to
cooperative

• The payoffs for Player 2 depend on the state (first table for
selfish, second table for cooperative)

• A player has to choose an action for each possible signal

• We can identify a type of a player with each possible signal
that the player could receive
– In equilibrium each type has to choose optimally

• Here Player 1 has one type and Player 2 has two types
– We can treat this as a 3-Player game

Application to the Prisoner’s Dilemma



A Nash equilibrium of a Bayesian game (Bayes-Nash
equilibrium) is a Nash equilibrium of the strategic game with

• Players: all types of all players in the Bayesian game, i.e. the
set of all pairs (i,ti) where i is a player in the Bayesian game
and ti a possible signal (type) of i

• Actions: For each player (i,ti) the set of actions is the set of
actions of player i in the Bayesian game

• Preferences: given by the expected payoff over all states given
the beliefs (conditional on the signal ti) and the actions of all
players (where the state determines their signal, which in turn
determines their action given their strategy)

Note: while a player knows her own type, we nevertheless need
to consider the actions of all types, because they impact on the
other players
– For each type of a player, we can treat the other types’ action as given,

because they have no influence on the given type’s payoff, so
technically we can treat them like other players

Nash equilibrium of a Bayesian game



Finding a Bayes-Nash equilibrium:

• Calculating Bayes-Nash equilibria can be messy, in particular in
games with n > 2 players who all have several types

• But often, dominance helps us:

– First, we need to reformulate the dominance criterion:
strategy r dominates s if r yields a higher expected payoff
against any type-dependent strategy vector of the other(s)

– Now if a type of a player has a dominant strategy, he has to
play it (see the prisoner’s dilemma for the selfish or
cooperative type)

– Everybody knows that, so we can fix this strategy for this type
and continue

– Similarly, if a type of a player has a dominated strategy, we
can eliminate this as usual and continue (this is particularly
useful if this strategy is dominated for all types of a particular
player, because then the other players know this strategy will
not be played no matter which type they face)



Bayesian games can also be used to capture other types of
uncertainty, e.g. about the other players’ knowledge.

State a

L R

L 2,2 0,0

R 3,0 1,1

State b

L R

L 2,2 0,0

R 0,0 1,1

State c

L R

L 2,2 0,0

R 0,0 1,1

Two signals for P1: (a) and (b or c). If he receives (b or c), then beliefs are
Pr(b|(b or c)) = , Pr(c|(b or c)) = 

Two signals for P2: (a or b) and (c). If he receives (a or b), then beliefs are
Pr(a|(a or b)) = , Pr(b|(a or b)) = 

Now let the state be c. Then both players know both preferences, but P1 does not
know that P2 knows P1’s preferences

While there are two equilibria in the game corresponding to state c, in the
equilibrium of this Bayesian game, all play R:

In state a, R is dominant for P1. So when P1 gets signal (a), he will play R. When
P2 gets signal (a or b), then given beliefs, R yields higher expected payoff no
matter what P1 does in state b, so P2 chooses R in both states a and b

If P1 gets signal (b or c), given beliefs and P2’s action R in b, R is best response

Finally, if P2 gets signal (c), given P1’s action in c, R is best response



Participants in economics experiments often effectively play a
Bayesian game:

• Experimental results often differ from the theoretical
prediction

– This can (sometimes) be captured by players having other regarding
preferences

• Frequently heterogeneity in actions and thus apparently in
preferences (or in beliefs) is observed

• Thus in experiments, the participants are typically in a
situation where they do not know the type of the other
player(s), but could know the distribution

(in particular if they play repeatedly with random matching)

• This is captured by a Bayesian game

Imperfect Information in Economics Experiments



• N players

• Submit a number [0,100]

• Winner is the one closest to 2/3 times the average of all
numbers

• Nash equilibrium?

• Do people play it?

• Explanation: Bayesian game where opponents’ type can be
{rational, irrational}

• Many games with similar property: centipede, travelling
salesman, auctions with resale

Example: guessing game (Nagel, 1995)



• An Auction is a mechanism to sell (or buy) an object where

potential buyers make bids and who obtains the object and

the price are solely determined by these bids.

Implications:

• Auctions are anonymous: only bids matter, not who made

them (this is violated by the tie-breaking rule in Osborne 3.5)

• Auctions are universal: any arbitrary object can be sold in

an auction

• Auctions are useful when the seller is not sure about the

valuations of the buyers for the object. Otherwise he can just

offer it to the bidder with the highest willingness to pay

– Auctions are about information revelation

Auctions



• Bidders typically do not know how other bidders value the

object, or not even how they themselves value the object.

Thus an auction is typically a Bayesian game.

• We can distinguish:

– Independent private value auction: Each bidder’s valuation v

depends only on her own signal and hence she knows her

valuation, but has no information about other bidder’s valuation

other than the initial distribution

•  e.g. a piece of art you buy only because you enjoy it, without considering to

resell it.

– Common value auction: Each bidder’s valuation is not

independent of the other bidder’s signal.

– Pure common value auction (“mineral rights model”):

Valuation is the same for all bidders (but not known by any of

them)

•  e.g. an oil field.

Auctions with imperfect information



Second-Price Sealed-Bid Auction

• all bidders make simultaneous secret (“sealed”) bids

• the highest bid wins the auction and the winner pays the
second highest bid

• does this make sense, would the auctioneer not prefer the
winner to pay his own bid?

• Not necessarily: knowing that they have to pay only the
second highest bids, bidders will bid more aggressively, so
the second highest bid in a 2nd price auction may be higher
than the highest bid in a 1st price auction.



Proposition: In the 2nd price sealed bid auction it is a
(weakly) dominant strategy to bid b(v) = v

SPA induces truth telling!

Proof: Let h = the highest of the other bids

Assume you bid b < v.

• If h < b, you win and you pay h.

• But by bidding v, you also win and also pay h.

• If h > v, then you do not win with either b or v.

• If b < h < v, then with b you do not win, but with v you
win and make a profit v – h > 0.

Thus b = v weakly dominates bidding b < v.

Equilibrium for Second-Price Sealed-Bid Auction



Assume you bid b > v.

• If h < v, then you win and pay h both if you bid b or v.

• If h > b, then you do not win in either case.

• But if v < h < b, you do not win by bidding v but you win by
bidding b and pay h.

• Your profit then is v – h < 0.

Thus bidding b = v weakly dominates bidding b > v

Therefore there is a symmetric equilibrium in weakly dominant
strategies where each bidder bids his valuation

Note that this result is independent of the number of bidders and
the risk preferences of the bidders



Equilibrium for Second-Price Sealed-Bid Auction

Remark: The proposition also holds for the English clock auction:

– There is a public price clock that increases

– Bidders can drop out at any price, but cannot re-enter the

auction

– The auction ends when only one bidder is left and the

winner pays the price when the second to last bidder quits

– It is weakly dominant to quit when p = v



• common for auctions run by mail

• all bidders make secret (“sealed”) bids xi

• the highest bid wins the auction and the winner pays

his bid

• Let h be the highest of the bids of the other bidders

• The expected profit in FPA is Pr(b>h)(v – b)

• Thus there is obviously a trade-off: if you raise your

bid, you increase the probability to win Pr(b>h), but

you reduce the amount you win (v – b).

• For example, if as in SPA you bid b = v, your profit is

0 for sure

• But if you bid too low, the profit will also be 0

First-price Seale-Bid Auction



Consider the following special case:

• Let there be 2 bidders and let the valuations be
independently distributed according to a uniform
distribution on [0,V] and bidders are risk neutral

Proposition: There is a symmetric Nash equilibrium where each
bidder chooses the bidding function b(v)=v/2

Proof: Let w be the other bidder’s valuation, h be his equilibrium
bidding strategy and g its inverse

• Then Pr(b > h(w)) = Pr(g(b) > w) = g(b)/V

• Now assume that h is linear h(w) = aw, then

• g(b)/V = b/aV, so the expected profit is

• (b/aV)(v – b) = (bv – b2)/aV.

• Taking the derivative w.r.t. b yields (v – 2b)/aV = 0 if b=v/2

• so the profit maximizing bid is b(v)=v/2

First-price auction with private values



More generally, we can show:

• In the first-price sealed bid independent private value
auction with n bidders and uniformly distributed values,
it is a Bayes-Nash equilibrium to bid

b= v (n – 1)/n

What happens if bidders are risk averse?

• expected profit in FPA is Pr(b > h)(v – b) (1)

• expected utility is Pr(b > h) u(v – b) (2)

• a risk averse bidder has a concave utility function u, so
when maximizing (2) the solution will be at a higher
Pr(b>h) and hence at a higher bid than for (1), i.e. the
bidder is more aggressive



Revenue Equivalence Principle: All standard auctions (that is
those where the highest bidder wins for sure) yield the same
(expected) revenue for the auctioneer.

• hence in FPA, bidders shade their bids (compared to SPA)
just enough to compensate for the fact that the winner pays
the highest instead of the second highest bid.

• Consider again the special case 2 bidders, uniform
distribution on [0,V]

• In SPA, the expected revenue is the expected value of the lower of the
two valuations, this is V/3

• In FPA, the expected revenue is  of the expected value of the higher
of the two valuations, which is 2V/3, so again V/3

• REP also holds for some special auctions like the all-pay
auction: the highest bidder wins, but all pay their bids

• Note: REP refers to expected revenue, for a specific set of valuations,
SPA and FPA generally yield different revenues

• REP does not hold for common value auctions or if some
conditions are not met (e.g. if bidders are risk-averse, the
first-price auction raises more revenue, WHY?)

Revenue Equivalence



The Winner’s Curse

Consider a pure common value SPA, n bidders

• You receive a signal s of the common value V

• What happens if you bid as for private values b(s) = E(V | si) ?

• If all bidders follow this strategy, you win if you have the
highest signal and pay the second highest signal.

• This is likely higher than V, so you make a loss and incur the
winner’s curse

The winner’s curse results from ignoring that winning the auction
is bad news about the value of the object:

• You win the auction because everybody else believed it was
worth less than you thought, which most likely means that you
got it wrong and pay too much

Equilibrium: b(si) = E(V | si = max{sk}, max{sk ,k i} = si})

Note: In equilibrium, the winner’s curse does not occur



Experimental Results

Hundreds of (laboratory and field) experiments have been run
with different auction formats.

Typical results:

– bidders approach SPA and EA equilibria with some
learning

– EA works better than SPA

– there is some overbidding in SPA, and more than in
EA. Why?

– FPA bids are on average frequently above equilibrium
• Possible explanations: risk-aversion, “joy of winning”,

bounded rationality

– Thus revenue equivalence does frequently not hold,
FPA yield more money than SPA

– Winner’s curse is frequent



Problem set #07

1. Think about the ultimatum game (we can consider this as a
strategic-form game, where the responder decides about his
minimal acceptable offer at the same time as the proposer
decides about the offer.) Let there be a selfish type of
responder (accepts everything) with probability q and a
“fair” type of responder who accepts only the equal split (or
above) with probability 1-q. Let the proposer be selfish.
Determine the Bayes-Nash equilibrium, depending on q.

2. Consider an auction where there are n objects for sale, but
each bidder can buy only one object. The n highest bidders
win the objects and pay the (n+1)th highest bid. Show that it
is again a dominant strategy to bid your valuation. What
happens if individual bidders could buy both units?

3. (How can auctioneers cheat? Is it easier to cheat in FPA or
SPA? In which auctions is it easier for bidders to collude?)

4. Osborne Ex 282.2

5. (Osborne Ex 307.1)


