## 1 Problem set 5

1) 

a) $(T, T, \ldots, T)$
b) Sequential rationality is already violated, so what should the player expect now?
c) How would you?

I would probably play pass a couple of times.
2)
a) $(P, P, \ldots, P)$
b) Out unless I was one of the last players. You cannot expect 100 players to resist the temptation to take the money and run.
3) Osborne 163.2 and 4) 173.3


P1 $x>y>z$
P2 $z>y>x$

|  | YXX | YXY | YZX | YZY | ZXX | ZXX | ZZX | ZZY |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| X | 0,2 | 0,2 | 0,2 | 0,2 | 1,1 | 1,1 | 1,1 | 1,1 |
| Y | 0,2 | 0,2 | 2,0 | 2,0 | 0,2 | 0,2 | 2,0 | 2,0 |
| Z | 1,1 | 2,0 | 1,1 | 2,0 | 1,1 | 2,0 | 1,1 | 2,0 |

Nash
i) $(\mathrm{z},((\mathrm{y} \mid \mathrm{x}),(\mathrm{x} \mid \mathrm{y}),(\mathrm{x} \mid \mathrm{z})))$
ii) $(\mathrm{z},((\mathrm{z} \mid \mathrm{x}),(\mathrm{x} \mid \mathrm{y}),(\mathrm{x} \mid \mathrm{z})))$
ii is not SPNE
but note outcome is exactly the same
5) In SPNE army 1 attacks, army 2 retreats. However, if army 2 could just burn the bridge (the option to retreat), army 1 will not attack in equilibrium.
6) Osborne 176.1
good is worth $v=2$, players have wealth $w=3$
max 3 moves in the game


Four SPNEs. In all of them player 2 passes after player one bids 2 .
Additionally:
In equilibrium 1)
P1 bids 3 after a history (player 1's first move, player 2's) $=(1,2)$
P2 passed after seeing a bid of 1, player 1 bids 1
In 2)
P1 passes after a history (player 1's first move, player 2's) $=(1,2)$
P2 passed after seeing a bid of 1, player 1 bids 1
In 3)
P1 passes after a history (player 1's first move, player 2's) $=(1,2)$
P2 bids 2 after 1, player 1 passes in the beginning
In 4)
P1 passes after a history (player 1's first move, player 2's) $=(1,2)$
P2 bids 2 after 1, player 1 bids 2 in the beginning
There are three outcomes possible, P1 passes in the beginning, P1 bids 1 and P2 passes, P1 bids 2 and P2 passes.
7) Osborne 177.1
a)

Players: firm and union

Terminal histories: $(\mathrm{w}, \mathrm{Y}, \mathrm{L})$ or $(\mathrm{w}, \mathrm{N})$
Player function: The union plays in beginning, after that the firm chooses $\mathrm{Y}, \mathrm{N}$ and then L
Preferences: profit for the firm, wL for union
b) Start from the end

The wage is w , the firm has accepted. What is the optimal L?
If $L \leq 50$ we have
$\max L(100-L) 1-w L$
FOC
$100-2 L=w$
$\Longrightarrow L=\frac{100-w}{2}$ if $w \leq 100,0$ else
So following an offer w , the company any $w<100$ and is indifferent at any $w \geq 100$
This means, the union will never choose $w \geq 100$ which would lead to zero payoff.
Lower w leads to $L=\frac{100-w}{2}$ so the union's payoff is
$\frac{100-w}{2} w$
$\frac{100-2 w}{2}=0$
$\Longrightarrow w=50$
this leads to $L=25$
c) Union makes $50^{*} 25=1250$
firm makes $25^{*} 75=625$
Can there be a w and L that makes them better off? Sure, this was the non-cooperative outcome!
if $L>50$
$w L>1250$
$2500-w L>625$
if $L \leq 50$
$w L>1250$
$L(100-L)-w L>625$
There are many $w, L$ that satisfy the inequalities, for example $\mathrm{L}=100, \mathrm{w}=15$
d) The firm can use non credible threats, e.g. reject any $w>20$.

