Problem set 4

Osborne 106.2

i)

BOS

	Bach	Stravinsky
B	2,1	0
S	0	1, 2

when player 1 is indifferent between going to her less preferred concert in the company of player 2 and the lottery in which with probability 1/2 she and player 2 go to different concerts and with probability 1/2 they both go to her more preferred concert, the Bernoulli payoffs that represent her preferences satisfy the condition

 $u_1(S,S) = 1/2u_1(S,B) + 1/2u_1(B,B)$

If we choose $u_1(S, B) = 0$ and $u_1(B, B) = 2$, then $u_1(S, S) = 1$. Similarly, for player 2 we can set $u_2(B, S) = 0, u_2(S, S) = 2$, and $u_2(B, B) = 1$. Thus the Bernoulli payoffs in the left panel of Figure 23.1 are consistent with the players' preferences.

Simpler:

	B	\mathbf{S}
В	х,у	0
S	0	у,х

```
we need y = 1/2x + \frac{1}{2}0 \Longrightarrow y = \frac{x}{2}
e.g. x = 2, y = 1
```

ii)

need $y = 1/4x + \frac{3}{4}0 \Longrightarrow y = \frac{x}{4}$ e.g. x = 2, y = 1/2

Osborne 114.2

1)

	\mathbf{L}	\mathbf{R}
Т	6,0	0,6
В	3,2	6,0

Table 1:

 $p = prob\{T\}, \, q = prob\{L\}$

 $p_1:$ U(T) = 6q U(B) = 3q + 6(1 - q) = 6 - 3qto get indifference $6q = 6 - 3q \Longrightarrow q = 2/3$

 $p_2:$ U(L) = 2(1-p) U(R) = 6pto get indifference $6p = 2 - 2p \Longrightarrow p = 1/4$

equilibrium (1/4, 2/3)

2)

	\mathbf{L}	R
Т	0,1	0,2
В	2,2	0,1

note T weakly dominated. If P1 mixes P2 must play R. R is optimal if p + 2(1-p) < 2p + 1 - p $\Rightarrow p + 2 - 2p$ $<math>\Rightarrow p > 1/2$

Osborne 114.3

	no eff	eff
no eff	0,0	0,-c
\mathbf{eff}	-c,0	1-c, 1-c

Table 3:

pure Nash (ne, ne) and (eff, eff) mixed: U(noeffort) = 0U(effort) = (1-p)(-c) + p(1-c)to get indifference set them equal $\Rightarrow p = c$

Osborne 118.2

ncitizens, k support A, m support B $2 \leq k \leq m$

 $U(vote) = \begin{cases} 2-c, \text{ if candidate wins} \\ 1-c, \text{ if tie} \\ -c \text{ else} \end{cases} \quad U(abstain) = \begin{cases} 2, \text{ if candidate wins} \\ 1, \text{ if tie} \\ 0 \text{ else} \end{cases}$

Supporters of A vote with probability pk supporters of B vote with certainty, others abstain

For A's supporters $U(v) = (1-c)p^{k-1} - c(1-p^{k-1}) = p^{k-1} - c$ U(novote) = 0set them equal $p = c^{\frac{1}{k-1}}$

B's supporters

For the abstainers we have that either all A's vote and there is a tie, or at least one of them doesn't and B wins. So the expected utility of an abstaining B is

$$p^k + 2(1 - p^k)$$

Voting would yield a certain victory and payoff 2 - c. Thus we have that following must hold $p^k + 2(1 - p^k) \ge 2 - c \Rightarrow c \ge p^k$

For those who vote

$$U(v) = -c + 1p^k + 2(1 - p^k)$$
 (1 if there is a tie, 2 if B wins)

For non voters

$$U(nv) = 1kp^{k-1}(1-p) + 2[1-p^k - kp^{k-1}(1-p)]$$

(she gets 1 in case of a tie and 2 in case of no tie and no win of A)

For voting to pay off

$$U(v) > U(nv) \Rightarrow 1 > c$$

The probability of voting p increases in c, this means turnout rises when costs increase! This result would seem to be a bit counterintuitive, but remember we are looking at a mixed strategy equilibrium, where players are playing as if to keep others indifferent.

	\mathbf{L}	Μ	\mathbf{R}
Т	2,2	0,3	1,2
В	3,1	1,0	0,2

Table 4:

Osborne 121.2

L dominated by mixture of M and R

 $p = prob\{T\}$ $q = prob\{M\}$

$$B_1(q) = \begin{cases} 0, \text{ if } q > 1/2\\ [0,1], \text{ if } q = 1/2\\ 1, \text{ if } q < 1/2 \end{cases}$$
$$B_2(p) = \begin{cases} 0, \text{ if } p > 2/3\\ [0,1], \text{ if } p = 2/3\\ 1, \text{ if } p < 2/3 \end{cases}$$

in eq (p,q) = (2/3, 1/3)so the equilibrium of the game is (2/3, 1/3), (0, 1/2, 1/2)

Osborne 141.1

pure equilibria

(B,L),(T,R) are there equilibria with T and L&M or L&R or L&M&R? no one with T and M&R? yes, P2 is indifferent if 1 chooses T for 1 to choose T we need $prob(r) \ge prob(m)$

eq with B and L&M or M&R or L&M&R? No. B and L&R? if 1 chooses B 2 is indiff between L&R. For 1 to choose B we need $2l + r < 3l \Longrightarrow r > l$ so eq (B,(l,o,r)) with $l \ge 1/2$ and r = 1 - l

eq with T&B and L&R? No if t > 0 there can be no indifference between L&R

eq with T&B and M&R? No if t < 1 U(R) > U(M)

eq with T&B and L&M&R?

No U(L) = U(R) requires t=0 U(M) = U(R) requires t=1

Osborne 142.1

	Α	В
Α	$1,\!1,\!1$	0,0,0
B	0,0,0	$0,\!0,\!0$

Table 5: A

	Α	В
Α	0,0,0	0,0,0
в	$0,\!0,\!0$	$4,\!4,\!4$

Table 6: B

let $x = prob_1\{A\}, y = prob_2\{A\}, z = prob_3\{A\}$ pure Nash (A, A, A) (B, B, B) $U_1(A) = yz1$ $U_1(B) = (1 - y)(1 - z)4$ from indifference (1 - y)(1 - z)4 = yzdue to symmetry x = y = z

$$(1-y)(1-y)4 = y^2$$

 $y = 2(1-y)$
 $y = 2/3$

Show the following

Proposition 1 A 2x2 game with two pure strict Nash equilibria always has a mixed strategy equilibrium that is not a pure strategy equilibrium.

Write down a generic 2x2 game

	\mathbf{L}	R
Т	a,b	c,d
B	e,f	g,h

Table 7:

Since the equilibria are strict they have to be in diagonally opposed corners of the matrix. Suppose w.l.o.g. they are T,L and B,R.

Then a > e and g > cBut then there is $q = prob\{L\}$ such that qa + (1 - q)c = qe + (1 - q)gSimilarly there is $p = prob\{T\}$ such that pb + (1 - p)f = pd + (1 - p)h