## Game Theory

## Problem set 3

## 59.2

Payoffs
$\pi_{i}=q_{i}\left(P\left(q_{1}+q_{2}\right)-c\right)-f$ if $q_{i}>0$
maximising we get

$$
\mathrm{BR}_{i}=\frac{a-c-q_{2}}{2}, \text { if profit is non negative }
$$

Profits at such a production level are

$$
\left(\frac{a-c-q_{2}}{2}\right)^{2}-f
$$

so we need $\left(\frac{a-c-q_{2}}{2}\right)^{2}>f$ or $q_{2} \leq a-c-2 \sqrt{f}=\bar{q}$
then the best response is

$$
B R_{1}\left(q_{2}\right)=\left\{\begin{array}{c}
\frac{a-c-q_{2}}{2} \text { if } q_{2}<\bar{q} \\
\left\{0, \frac{\left.\frac{a-c-q_{2}}{2}\right\}, \text { if } q_{2}=\bar{q}}{0, \text { if } q_{2}>\bar{q}}\right.
\end{array}\right.
$$

Firms are symmetric, so the same should hold for firm 2.
Now, we need to do case distinctions. If f is small enough that $\bar{q}>\frac{a-c}{2} \Rightarrow$ $f<\frac{(a-c)^{2}}{16}$ then we have following form for the functions


The eq. is then
$\left(q_{1}^{*}, q_{2}^{*}\right)=\left(\frac{a-c}{3}, \frac{a-c}{3}\right)$ if $\frac{(a-c)^{2}}{16}<f<\frac{(a-c)^{2}}{9}$
then

and we have three eq.
If $\frac{(a-c)^{2}}{9}<f<\frac{(a-c)^{2}}{4}$

and we have two eq.
If f even larger no firm wants to produce for any quantity of the other firm, so the unique Nash is $(0,0)$

## 62.1

if $P\left(Q^{*}\right)<\underline{p}$
the price in the proposed equilibrium is lower than the minimum possible unit cost, so any firm that produces loses money, so $q=0$ is a profitable deviation
if $P\left(Q^{*}+\underline{q}\right)>\underline{p}$
a firm that is producting 0 or $0+\varepsilon$ (such a firm exists, since there are infinitely many and demand is finite), its profit is zero or $0+\delta$

If it deviates and produces $\underline{q}$ then the output becomes at most $Q^{*}+\underline{q}$ so that the price still exceeds $\underline{p}$
(since $\left.P\left(Q^{*}+\underline{q}\right)>\underline{p}\right)$
So, this is a profitable deviation

## 69.1

at $(\overline{\mathrm{p}}, \overline{\mathrm{p}})$ profits are 0 as 1 gets the whole market at a profit $(\overline{\mathrm{p}}-\mathrm{c})(\alpha-\overline{\mathrm{p}})$ and 2 gets nothing

If any firm raises price its profit remains zero
If either firm lowers price, it receives all demand and loses money
There is no other eq.
If $p_{1}=p_{2}<\overline{\mathrm{p}}$
then 1 loses money, so can deviate by raising price and increase profit

If $p_{1}=p_{2}>\overline{\mathrm{p}}$
then 2 makes zero, can obtain positive by lowering price by $\varepsilon$
If $p_{i}<p_{j}$
and i makes pos. profit, then j can raise price a bit over i and still make positive profit instead of zero

If $p_{i}<p_{j}$
and i makes zero profit, then i can raise price a bit and make positive profit
If $p_{i}<p_{j}$
and i makes negative profit, then i can raise price above j and guarantee zero profit

## 74.2

In equilibrium both candidates choose median voter position in the largest state $\left(m_{1}\right)$, and there is a tie.

If anyone deviates to more than $m_{1}$ she loses in both
If anyone deviates to less than $m_{1}$, towards $m_{2}$, she gains in 2 but loses in 1 so she loses overall.

There is no other Nash eq. If one or both candidates is away from $m_{1}$ there is always a profitable deviation for the losing player: move to $m_{1}$ and tie or win.

## 80.2

If $y_{i}<y_{j}$ then j can increase payoff by reducting y by $\varepsilon$, so it must be $y_{i}=y_{j}$ Now, if $y<1$ then any player can deviate to $y+\varepsilon$ and gain the whole output. So the eq. is $(1,1)$ and payoffs are zero.

