
EC3224 Autumn Lecture #05 
Extensive Form Games with Perfect Information 

•  Reading 
–  Osborne, Chapters 5, 6, 7.1., 7.2, 7.7 

•  Learning outcomes 
–  construct simple games in extensive form 
–  understand the concept of a subgame-perfect 

equilibrium for such games 
–  find the subgame-perfect equilibrium through 

backward induction 



Timing matters 

•  Consider a game of 
rock, paper, scissors 
– Simultaneous moves! 

•  How do children often 
cheat in that game? 



Extensive Form Games 

•  The strategic form of a game does not represent 
the timing of moves 

•  Hence plans of actions are fixed and cannot be 
changed 

•  In contrast, extensive form games capture the 
sequential structure of a game 

•  This captures that players can change their plans 
•  For now, we consider extensive form games with 

perfect information, i.e. when choosing an action 
a player knows the actions chosen by players 
moving before her 



Histories and Terminal Histories 

•  A sequence of actions in an extensive form 
game for which no actions follow is called a 
terminal history 

•  if (a1, a2 , …, ak) is a terminal history, than 
any (a1, a2 , …, am) with m ≤ k is a 
subhistory and for m < k a proper 
subhistory (including empty sequence Ø) 

•  A history is any subhistory of any terminal 
history 



Extensive Form Games 

An extensive form game is characterized by 
•  players 
•  a set of terminal histories (that is all possible 

complete sets of actions in the game) 
•  a player function that assigns to any proper 

subhistory of any terminal history the player who 
moves after this history 

•  preferences over the set of terminal histories 



Game Trees 

•  An extensive form game can be represented 
in a game tree 

•  This shows  
– who moves when (at the nodes, representing 

the (non-terminal) histories)  
–  their available actions (the branches)  
–  and the payoffs representing preferences over 

terminal histories (at the terminal nodes) 
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Strategies 

•  A strategy is a complete description of a player’s 
actions at all the nodes when it’s his turn to move, 
e.g. for player 2 to choose r after L and l after R. 
Player 2 has 4 strategies: {(l,l),(l,r),(r,l),(r,r)} 

•  Mixed strategies are defined as usual 
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Nash Equilibrium 
•  The Nash equilibrium of an extensive form game is 

defined as usual: 
–  s* is a (mixed-strategy) Nash equilibrium if for every 

player i and every mixed strategy si:     
     Ui(s*) ≥ Ui (si, s-i*) 

 where Ui(s) is i’s expected payoff for the terminal histories 
that are induced by the players following strategies s 

•  Nash equilibrium is not a satisfactory concept for 
extensive form games: 
–  moves after histories that would not be reached are 

irrelevant for the outcome, so in Nash equilibrium, the 
actions do not have to be payoff maximizing at these points 

–  but what if a player makes a mistake and the history is 
reached? 



Example: Mini Ultimatum Game 
•  Proposer (Player 1) can suggest one of two splits of £10: (5,5) 

and (9,1). 
•  Responder (Player 2) can decide whether to accept or reject 

(9,1), but has to accept (5,5). Reject leads to 0 for both 
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Mini Ultimatum Game in Strategic Form 

         Player  2 
accept (9,1)  reject (9,1) 

Player 1 propose (5,5) 5,5 5,5 
propose (9,1) 9,1 0,0 

•  There are two equilibria:  
1.  (propose (9,1), accept (9,1)) 
2.  (propose (5,5), reject (9,1)).  

•  Equilibrium 2 is in weakly dominated strategies 
(reject (9,1) is weakly dominated) 



  •  In strategic form, we assume players have correct 
beliefs due to experience 

•  But if 1 always proposes (5,5), she does not gain 
experience after propose (9,1) 

•  Experience could result from occasional mistakes 
•  But if 1 occasionally mistakenly chooses (9,1), then 

reject (9,1) is not optimal any more 
•  In extensive form it is seen that equilibrium 2 is not 

convincing because it relies on a non-credible threat: 
if the 1 proposes (9,1) player 2 has an incentive to 
deviate (i.e. to accept) 

Example: Mini Ultimatum Game 



Sequential Rationality 
•  Think about equilibria in a game in extensive form 
•  What should we do after a history that will not occur 

in equilibrium? 
•  Following the definition of Nash-equilibrium, the 

choice is irrelevant after this history 
•  However, an equilibrium appears to be more 

convincing, if we require that each player chooses 
optimally in any decision node and takes into account 
that all players will do so in the future 

•  We call this sequential rationality  
•  This notion is captured by subgame perfect 

equilibrium (Selten, 1965) 



Nobel Prize in Economics, 1994 
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Subgames 
A subgame is a part of an extensive form game 

following some history, with the player function and 
preferences as for the whole game 

•  A subgame is a game in itself: 
–  it starts at a single node 
–  it contains all moves of the whole game following the 

history 
–  once we are in a subgame, we do not leave it  

•  By convention, we consider the entire game to be a 
subgame of itself 



Subgame Perfect equilibrium 
•  A strategy s for a game induces a strategy s(g) for any 

subgame g 
•  A subgame perfect Nash equilibrium (SPNE) is a set 

of strategies {si, i=1,…,n}  such that for each subgame 
g, the set of induced strategies {si(g), i=1,…,n} forms a 
Nash equilibrium for this subgame, that is, in no 
subgame can a player increase her payoff by deviating to 
another strategy.  

•  In particular, since a game is a subgame of itself, a 
SPNE is always a Nash equilibrium  



Subgame Perfect equilibrium 
•  In a SPNE the past is irrelevant, i.e. however we got to 

the subgame, we have to play an equilibrium, even if the 
strategies imply that we do not reach this subgame 

•  This is quite a strong requirement, because even if we 
got to the subgame by clearly non-rational behavior, we 
still require rationality for the future 

•  Furthermore, in a SPNE, all players must have the same 
expectation concerning the equilibrium to be played in a 
subgame, which is not necessarily always reasonable 



Example: Mini Ultimatum Game 
•  There are 2 subgames: whole game and following (9,1) 
•  If 1 proposes (9,1), 2 is better off accepting 
•  Given that, 1 is better off proposing (9,1) 
•  Thus the only subgame perfect equilibrium is: 

(propose (9,1), accept (9,1)) 
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Backward Induction 
•  Length of a subgame: number of moves in longest 

terminal history 
•  A game has a finite horizon if the length of the 

longest terminal history is finite 
•  Subgame perfect equilibria of games with finite 

horizon can be found by backward induction 
•  Backward induction:  

–  first find the optimal actions in the subgames of length 1 
–  then taking these actions as given, find the optimal actions  

of players who move at beginning of subgames of length 2 
–  continue working backwards, ends after finitely many steps  

•  If in each subgame there is only one optimal action, 
this procedure leads to a unique subgame perfect 
equilibrium  



Example: Mini Ultimatum Game 
•  There is one subgame of length 1, following (9,1) 
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Example: Mini Ultimatum Game 
•  There is one subgame of length 1, following (9,1) 
•  The optimal action is accept 
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Example: Mini Ultimatum Game 
•  There is one subgame of length 1, following (9,1) 
•  The optimal action is accept 
•  There is one subgame of length 2, the whole game 
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Example: Mini Ultimatum Game 
•  There is one subgame of length 1, following (9,1) 
•  The optimal action is accept 
•  There is one subgame of length 2, the whole game 
•  Taking “accept” in the subgame of length 1 as given, we see 

that (9,1) is optimal 
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The Ultimatum Game 
•  Proposer (Player 1) suggest (integer) split of a fixed pie, say £10.  
•  Responder (Player 2) accepts (proposal is implemented) or rejects 

(both receive 0) 
•  There is no unique solution for the subgame following (10,0) 
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If at one step, there is no unique best action of a player, backward 

induction as above does not work 
We can generalize: 
•  at each step, consider the set of optimal actions 
•  then follow each of them as above 
This procedure allows us to find all subgame perfect equilibria of a 

game with finite horizon 
Apply this to ultimatum game:  
For subgames of length 1, for each offer (10 - x, x) with x > 0, the 

responder strictly prefers to accept 
for (10,0) responder is indifferent, so there are two optimal actions, 

accept and reject 
So there are two subgame perfect equilibria: 
1.  The proposer offers (10,0) and the responder accepts all offers, 

including (10,0) 
2.  The proposer offers (9,1) and the responder rejects (10,0) but 

accepts all positive offers, i.e. accepts (9,1), (8,2) etc 

Generalizing backward induction 



Existence of subgame perfect equilibrium 
•  A game is finite if it has a finite horizon and finitely 

many terminal histories (i.e. each time a player 
moves, he has finitely many available actions) 

•  If a player has finitely many actions, we can find (at 
least) one that is optimal 

•  Thus there is always a solution at each step of 
backward induction and thus 

Proposition: Every finite extensive game with perfect 
information has a subgame perfect equilibrium 

 



Further generalizing backward induction 
•  Assume after player 1 chooses R, both players move once more, but 

simultaneously (1 chooses row, 2 column) 
•  Thus we have a subgame after R and subgame perfect equilibrium 

requires equilibrium play in this subgame 
•  By starting at the end, we find SPNE ((A,U),(a,L)) and ((B,D),(a,R) 
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Backward Induction and Iterated Elimination of 
Dominated Strategies 

•  Backward Induction corresponds to iterated 
elimination of dominated strategies in the strategic 
form of the game: 
–  a strategy that is not payoff maximizing in a subgame of 

length 1 is dominated by the strategy that yields a higher 
payoff in this subgame but is otherwise identical 

–  picking the payoff-maximizing choice in this subgame 
corresponds to eliminating the dominated strategies 

–  having eliminated non-maximizing strategies in subgames 
of length 1, a strategy that is not payoff maximizing in a 
subgame of length 2 is dominated by one that is 

–  continuing in this fashion leads exactly to the same solution 
as backward induction 



Commitment 
•  In some situations a player can profit from reducing his options 
•  Here, Player 2 would like to eliminate option l after Right 
•  This would lead Player 1 to choose Left 
•  Hence Player 2 would profit from being able to commit to 

choosing r after Right 
•  But the ability to commit would be part of the game 
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•  In some situations a player can profit from reducing his options 
•  Here, Player 2 would like to eliminate option l after Right 
•  This would lead Player 1 to choose Left 
•  Hence Player 2 would profit from being able to commit to 

choosing r after Right 
•  But the ability to commit would be part of the game 



Problems with Backward Induction 

•  If there are many players, the demands on the 
players’ rationality become very strong.  

•  Example: 100 players 
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Problems with Backward Induction 
•  If a player moves repeatedly and has already 

violated the backward induction solution once, 
what shall the others think?  

•  Example: centipede game 
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Application: Agenda Control and Strategic Voting 
•  3 players are voting upon three proposals, x,y,z 
•  Preferences:  

–  P1: u(x) > u(y) > u(z) 
–  P2: u(y) > u(z) > u(x) 
–  P3: u(z) > u(x) > u(y) 

•  It is agreed that they will vote in the following way: 
–  first two proposals are voted upon 
–  then the winning proposal and the remaining proposal are voted upon 

•  Assume P1 can determine the sequence of votes (the agenda) 
–  then if all votes are truthful, she will choose first y against z and then 

the winner (y) against x, then x wins 
–  But truthful voting is not SPNE: in the last stage, voting will be truthful, 

but knowing that, P2 should vote for z in the first stage (P2 will vote 
strategically) 

–  in the SPNE, P1 will choose for the first round x and z, then P3 will 
vote strategically for x (because otherwise y will win in the end) and 
then x will win against y in the second stage 

–  So by being able to determine the agenda, P1 can get preferred result    



Problem set #05 
1.  Consider the centipede game 

a)  Find the subgame perfect equilibrium through backward induction 
b)  What is the problem for player 2 if player 1 chooses I on his first 

move? 
c)  How would you play the game? 

2.  Do question 1 (a) and (c) for the “100-players game”. 
3.  Osborne 163.2 
4.  Osborne 173.3 
5.  (Osborne 173.4) 
6.  (Osborne 176.1) 
7.  (Osborne 177.1) 
ESSAY TOPIC (max 1500 words): Choose a recent story from 

the news. Describe the situation as a game (in strategic or 
extensive form). Find the equilibrium. Discuss whether 
actual events correspond to the equilibrium (if not discuss 
possible reasons why not). Discuss your assumptions.  
 (if you’re really out of ideas, try A Beautiful Mind, but watch out, the described eq. is wrong) 


