
EC3224 Autumn Lecture #04
Mixed-Strategy Equilibrium

• Reading
– Osborne Chapter 4.1 to 4.10

• By the end of this week you should be able to:
– find a mixed strategy Nash Equilibrium of a game
– explain why mixed strategies can be important in

applications



Example: Matching Pennies

1,-1-1,1Tail

-1,11,-1HeadPlayer 1

TailHead

2         Player

• Matching pennies does not have a Nash equilibrium (in the game
with ordinal preferences), i.e. there is no steady state where all
players 1 choose the same action and all players 2 choose the same
action and nobody wants to change
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Example: Matching Pennies

1,-1-1,1Tail

-1,11,-1HeadPlayer 1

TailHead

2         Player

• Matching pennies does not have a Nash equilibrium (in the game
with ordinal preferences), i.e. there is no steady state where all
players 1 choose the same action and all players 2 choose the same
action and nobody wants to change

• But: we can assume that if a player faces getting 1 with probability
p and -1 with probability 1-p, then the higher p the better

• Now if player 2 chooses H with probability ½, then both H and T
yield the same lottery to player 1 (namely getting 1 with
probability ½ and -1 with ½)



Example: Matching Pennies

• Thus no matter which strategy player 1 chooses, she has no
incentive to change it

• The same holds for player 2: if player 1 chooses H with
probability ½ and T with probability ½, both H and T yield
the same lottery for him

• Thus player 2 has no incentive to change his strategy
• Therefore, if both players choose H with probability ½ and T

with probability ½, no one has an incentive to change
• Thus we have a steady state
• This can be interpreted either as a state where each player

randomizes with equal probability between H and T or as
game between populations where half of the players choose
H and the other half choose T



Generalization: Preliminaries
• Ordinal payoff functions are generally not sufficient in

order to express preferences over lotteries
• For example in this case we need to know how much

worse is -2 than -1 compared to the difference of 1 and -1
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• Ordinal payoff functions are generally not sufficient in

order to express preferences over lotteries
• For example in this case we need to know how much
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• Thus we need a cardinal payoff function, where
differences have meaning

• von Neumann – Morgenstern (vNM) preferences:
Preferences over lotteries represented by the expected
value of a payoff function over the deterministic outcomes
(“Bernoulli payoff function”)



Definitions
• A strategic game (with vNM preferences) consists of

– a set of players
– for each player, a set of actions
– for each player, preferences regarding lotteries over action

profiles that may be represented by the expected value of a
(“Bernoulli”) payoff function over action profiles

• Definition:  A mixed strategy of a player is a probability
distribution over the player’s actions

• can denote this by vector of probabilities (p1,…, pn) if Ai is a
set of n actions {a1,…, an}

• Let Δ(Ai) be the set of mixed strategies over Ai

• Pure strategy: mixed strategy that puts probability 1 on a
single action, i.e. a deterministic action



Mixed-strategy Nash Equilibrium
• Let α* be a mixed strategy profile in a strategic game

with vNM preferences
• Then α* is a (mixed-strategy) Nash equilibrium if

for every player i and every mixed strategy αi∈Δ(Ai):

 Ui(α*) ≥ Ui (αi, α-i*)
where Ui(α) is i’s expected payoff given α

Proposition: every game with vNM preferences with
each player having finitely many available actions
has a (mixed-strategy) equilibrium

Note: this does not mean that there is no equilibrium if
players have infinitely many actions. There just
might be no equilibrium



Best Response Functions

• Best response functions are defined as for
deterministic actions

• Best response function of i:
• Bi(α-i) = {αi: Ui(αi,α-i ) ≥ Ui(αi',α-i ) for all mixed

strategies αi'∈Δ(Ai)}
• Set-valued, each member of Bi(α-i) is a best response

to α-i

Again, we get:
Proposition: α* is a Nash equilibrium if and only if

 αi* ∈ Bi(α-i*) for every i



Best Response Functions for Matching Pennies
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• p: Probability that 1 chooses Head
• q: Probability that 2 chooses Head
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• p: Probability that 1 chooses Head
• q: Probability that 2 chooses Head
• B1(q) = 1 if q >1/2; = 0 if q <1/2; =[0,1] if q =1/2
• B2(p) = 0 if p >1/2; = 1 if p <1/2; =[0,1] if p =1/2



Best Response Functions for Matching Pennies

1,-1-1,1Tail
-1,11,-1HeadPlayer 1
TailHead
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• p: Probability that 1 chooses Head
• q: Probability that 2 chooses Head
• B1(q) = 1 if q >1/2; = 0 if q <1/2; =[0,1] if q =1/2
• B2(p) = 0 if p >1/2; = 1 if p <1/2; =[0,1] if p =1/2
• Equilibrium: (p, q) = (1/2,1/2)
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• p: Probability that 1 chooses Ball
• q: Probability that 2 chooses Ball
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• p: Probability that 1 chooses Ball
• q: Probability that 2 chooses Ball
• B1(q) = 1 if q >1/3; = 0 if q <1/3; =[0,1] if q =1/3
• B2(p) = 1 if p >2/3; = 0 if p <2/3; =[0,1] if p =2/3



Best response function for Battle of the Sexes

1,20,0Theatre
0,02,1BallPlayer 1

TheatreBall
2         Player

• p: Probability that 1 chooses Ball
• q: Probability that 2 chooses Ball
• B1(q) = 1 if q >1/3; = 0 if q <1/3; =[0,1] if q =1/3
• B2(p) = 1 if p >2/3; = 0 if p <2/3; =[0,1] if p =2/3
• Equilibria: (p, q) = (1,1) = (Ball, Ball),

(p, q) = (0,0) = (Theatre, Theatre)
(p, q) = (2/3,1/3)



Pure-Strategy Equilibria survive allowing for
mixing

• In battle of the sexes, the 2 equilibria identified in
the game with ordinal preferences survive if we
interpret the game as having vNM preferences and
allow for mixing

• This is always true and vice versa for pure-strategy
equilibria



Pure-Strategy Equilibria survive allowing for
mixing

• Proposition: any equilibrium of a game with ordinal
preference is a pure-strategy equilibrium of the
corresponding game with vNM preferences and any
pure-strategy equilibrium of a game with vNM
preferences is an equilibrium of the corresponding
game with ordinal preferences

• So all equilibria of the games we encountered so far
stay equilibria if we allow for mixing and interpret
the payoff functions as Bernoulli payoff functions



Characterization of mixed-strategy equilibria
Proposition: let α* be a mixed-strategy equilibrium. Then
• each action ai that is played by i with positive probability

according to αi* yields the same expected payoff to i as
strategy αi*

• every action ai' that is played by i with probability 0
according to αi* yields at most the same expected payoff to i
as strategy αi*

This is useful for finding mixed-strategy equilibria:
• each player has to be indifferent between all the strategies

she plays
• so for a given game and each player i, we can consider

subsets of strategies and see whether we find solutions for
the other players’ mixed strategies, such that i is
indifferent among all actions in the subset



No equilibrium where either player plays a pure strategy (easy)
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Is there one where player 1 chooses T and B, M and B or all

three actions with positive probability? No: T strictly
dominates B, so whatever player 2 does, 1 can increase
expected payoff by playing T instead of B (so b = Pr(B) = 0)
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Is there one where player 1 chooses T and B, M and B or all

three actions with positive probability? No: T strictly
dominates B, so whatever player 2 does, 1 can increase
expected payoff by playing T instead of B (so b = Pr(B) = 0)

That leaves 1 choosing T and M. This requires for l=Pr(L)
2l + 5(1 – l) = 3l + 1(1 – l), or 5 – 3l = 1 + 2l or l = 4/5
mixing of 2 between L and R requires for t=Pr(T)
3t + 2(1 – t) = 4(1 – t), or 2 + t = 4 – 4t or t = 2/5
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No equilibrium where either player plays a pure strategy (easy)
Is there one where player 1 chooses T and B, M and B or all

three actions with positive probability? No: T strictly
dominates B, so whatever player 2 does, 1 can increase
expected payoff by playing T instead of B (so b = Pr(B) = 0)

That leaves 1 choosing T and M. This requires for l=Pr(L)
2l + 5(1 – l) = 3l + 1(1 – l), or 5 – 3l = 1 + 2l or l = 4/5
mixing of 2 between L and R requires for t=Pr(T)
3t + 2(1 – t) = 4(1 – t), or 2 + t = 4 – 4t or t = 2/5
Equilibrium: ((t,m,b),(l,1 – l)) = ((2/5,3/5,0),(4/5,1/5))
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4,11,5B
1,43,2MPlayer 1

RL
2         Player



Dominated strategies
An action can be dominated by a mixed strategy:
The mixed strategy αi  strictly dominates action ai' if for all

profiles  a-i of the other players’ actions the expected payoff
to αi  is strictly larger than the payoff to ai' , i.e.

 Ui(αi,a-i ) > ui(ai',a-i ) for all a-i

ai' is then strictly dominated



Dominated strategies
An action can be dominated by a mixed strategy:
The mixed strategy αi  strictly dominates action ai' if for all

profiles  a-i of the other players’ actions the expected payoff
to αi  is strictly larger than the payoff to ai' , i.e.

 Ui(αi,a-i ) > ui(ai',a-i ) for all  a-i

ai' is then strictly dominated
Example: T is strictly dominated by a mixed strategy that plays

M and B both with probability ½.

1,01,3T

3,10,5B
0,44,2MPlayer 1

RL
2         Player



Symmetric games

Definitions of symmetric games and symmetric equilibria carry
over in obvious way

We had seen that symmetric game with ordinal preferences
does not necessarily have a symmetric equilibrium

But a symmetric game with vNM preferences and a finite set of
actions always has at least one symmetric equilibrium (pure
or mixed).



Application: Preparing questions for a seminar
n students, all identical, decide independently
benefit b > 0 to each if at least one is prepared, 0 otherwise
cost c with 0 < c < b  of preparing the question
There are n asymmetric equilibria where exactly one is prepared
Symmetric equilibrium? Has to be mixed.
p: probability to prepare
need U(prepare) = U(not prepare)
b – c = 0 Pr(0 others prepare) + b Pr(>0 others prepare)
b – c = b (1 – Pr(0 others prepare))
c/b = Pr(0 others prepare) = (1 – p)n-1

p = 1 – (c/b)1/(n-1)

Note: p is decreasing in n. But also probability that at least one
is prepared is decreasing in n, because probability that no one
is prepared is (1 – p) c/b, which is increasing in n.



More on mixed-strategy equilibria

It appears a bit odd that players choose their strategies in order
to keep the others indifferent.

• It is not claimed that players intentionally do this, but is just
an equilibrium requirement

• However, think of repetition of games that have matching
pennies structure (e.g. goalie vs. penalty kicker): the players
actually would like to keep the other indifferent. Why?



More on mixed-strategy equilibria

How could players arrive at their beliefs?
• Deleting dominated strategies
• Best-response dynamics (play best response to previous

action of opponent)
• Learning in repeated games
• This illustrates that there are stable mixed equilibria (e.g. in

matching pennies) and unstable ones (e.g. in BoS)



Problem set #04
NOTE: I expect that you have tried to solve the

exercises before the seminar
1. Osborne, Ex 106.2
2. Osborne, Ex 114.2
3. (Osborne, Ex 114.3)
4. (Osborne, Ex 118.2)
5. Osborne, Ex 121.2
6. Osborne, Ex 141.1
7. Osborne, Ex 142.1
8. Show the following: a 2x2 game with two pure

strict Nash equilibria always has a mixed-strategy
equilibrium that is not a pure strategy equilibrium.


