EC3224 Autumn Lecture \#03 Applications of Nash Equilibrium

- Reading
- Osborne Chapter 3

By the end of this week you should be able to:

- apply Nash equilibrium to oligopoly games, voting games and other examples.

Cournot Equilibrium

- The standard ingredients:
- n identical firms, with constant marginal costs c
- linear inverse demand $P=a-Q$
- total quantity $Q=q_{1}+\ldots+q_{n}$
- look for best response function:
- Profit for $i: P q_{i}-c q_{i}=(a-Q) q_{i}-c q_{i}$
$-\operatorname{let} Q_{-i}=Q-q_{i}$
- so profit for i : $\left(a-Q_{-i}-q_{i}\right) q_{i}-c q_{i}$
- taking the derivative: $\left(a-Q_{-i}-c\right)-2 q_{i}$
- Best response function $b_{i}\left(Q_{-i}\right)=\left(a-c-Q_{-i}\right) / 2$

Cournot Equilibrium

- in equilibrium $q_{1}=\ldots=q_{n}$
- why? Let $x=q_{i}-q_{k}$
- then $Q_{-i}-Q_{-k}=-x$ and thus $b_{i}\left(Q_{-i}\right)-b_{k}\left(Q_{-k}\right)=x / 2$
$-\operatorname{So} x=q_{i}-q_{k}=b_{i}\left(Q_{-i}\right)-b_{k}\left(Q_{-k}\right)=x / 2$
- Hence $x=0$
- Put $q_{1}=\ldots=q_{n}$ in best response function

$$
\begin{aligned}
& q_{i}=b_{i}\left(Q_{-i}\right)=\left(a-c-Q_{-i}\right) / 2 \\
= & q_{i}=(a-c) / 2-(n-1) q_{i} / 2 \\
=> & (n+1) q_{i} / 2=(a-c) / 2 \\
=> & q_{i}=(a-c) /(n+1) \\
=> & Q=n(a-c) /(n+1) \\
\Rightarrow & P=a-Q=(a+n c) /(n+1)
\end{aligned}
$$

- Cournot-game is example for game with externalities

Bertrand Equilibrium

- You should remember this from Micro.
- We will discuss some special cases in the seminar
- Read the chapter in Osborne to refresh your memory.

Applications to Politics

- Hotelling's model of electoral competition: - one-dimensional policy space
- continuum of voters with preferred policy x
- vote for candidate closest to x
- median preferred policy is m
- players: candidates
- actions: policies
- preferences: prefer winning alone over tied win, the fewer with whom to tie the better and tied win is better than losing

Equilibrium in Hotelling's model with 2 candidates

- Best response function:
- if $x_{i}<x_{k}$, then i gets all voters with $x<\left(x_{i}+x_{k}\right) / 2$
- so i wins if x_{i} is closer to m than x_{k}
- Thus $B_{i}=\left\{x_{i}:\left|x_{i}-m\right|<\left|x_{k}-m\right|\right\}$, for $x_{k} \neq m$

$$
=\{m\}, \text { for } x_{k}=m
$$

- Only intersection: (m, m)
- Can also argue directly why this is the unique equilibrium
- "minimum differentiation" result
- also applicable to product differentiation

Equilibrium in Hotelling's model with 3 candidates

- First case: 3 candidates are in the race (no decision regarding entry), distribution of voters has no mass points (more specifically, what we need is mass at m is $<1 / 3$)
- Consider possible equilibria

1. $x_{i}=x_{j}=x_{k}$: each candidate gets $1 / 3$ of votes. There are $>1 / 3$ of voters to left or right, each candidate wants to deviate
2. $x_{i}=x_{j} \neq x_{k}$ and all candidates tie or i and j tie: no equilibrium: there are more than $1 / 3$ of voters left or right of x_{i} and k could hence win by moving just next to i and j
3. $x_{i}<x_{j}<x_{k}$ and two or three candidates tie: no equilibrium: one of those who tie is i or k (or both), who can then increase her share and win by moving closer to j.

Equilibrium in Hotelling's model with 3 candidates

First case, possible equilibria continued:
4. $x_{i}<x_{j}<x_{k}$ and j wins: no equilibrium: at least one of i and k can increase the share and win by moving closer to j or tie with j by moving to $x_{j \text {. (because the share of at least }}$ one of i and k must be smaller than $1 / 3$)
5. That leaves $x_{i} \leq x_{j}<x_{k}$ and k winning or $x_{i}<x_{j} \leq x_{k}$: and i winning. Indeed, we have such equilibria, e.g. if voters are uniformly distributed on $[0,1]: x_{i}=x_{i}=1 / 4$ and $x_{k}=3 / 4$. k wins. If i deviates to $x_{i}{ }^{\circ}<1 / 2$, then k still wins. If i deviates to $x_{i}{ }^{〔}>1 / 2$, then j wins. If i deviates to $x_{i}{ }^{〔}=1 / 2$, then j and k tie. And the same holds for j.
NOTE: If candidates care not only about winning, but also about there share of votes, there is no equilibrium in pure strategies, because, for $x_{i} \leq x_{j}<x_{k} k$ can increase the vote share by moving to the left.

Equilibrium in Hotelling's model with $\mathbf{3}$ candidates

- Second case: candidates can decide whether to enter, prefer to stay out over lose, but prefer tying for victory over staying out
- previous analysis shows in any equilibrium with 3 candidates running, there is exactly one winner. But then the two losers would prefer to stay out, so there cannot be an equilibrium where 3 candidates enter.
- equilibrium where 2 candidates enter?
- Now this must be $\left(x_{i}, x_{j}\right)=(m, m)$, but then k can enter at x_{k} $=m+\varepsilon$ or $x_{k}=m-\varepsilon$ and win
- equilibrium where 1 candidate enters?
- No, if $x_{i}=m$, second can enter and tie, otherwise second can enter and win
- No (pure-strategy) equilibrium

The war of attrition

- Two players fight, the one who gives in later wins, they value winning with v_{1}, v_{2}, cost: time to end
- actions: decide when to stop t_{i}

$$
\text { - Payoff: } \begin{aligned}
u_{i}\left(t_{i}, t_{k}\right) & =v_{i}-t_{k} \quad \text { if } t_{i}>t_{k} \\
& =-t_{i} \text { if } t_{i}<t_{k} \\
& =v_{i} / 2-t_{i} \quad \text { if } t_{i}=t_{k}
\end{aligned}
$$

- Best response function:

$$
\begin{array}{rlrl}
-B_{i}\left(t_{k}\right) & & =\left\{t_{i}: t_{i}>t_{k}\right\} & \\
& \text { if } t_{k}<v_{i} \\
& =\{0\} & & \text { if } t_{k}>v_{i} \\
& =\left\{t_{i}: t_{i}=0 \text { or } t_{i}>t_{k}\right\} & & \text { if } t_{k}=v_{i}
\end{array}
$$

- Equilibria: $\left(t_{1}, t_{2}\right)$ with either $t_{1}=0$ and $t_{2} \geq v_{1}$ or $t_{2}=0$ and $t_{1} \geq v_{2}$
- No symmetric equilibrium (in pure strategies)

The war of attrition

- Now consider alternative set-up, where the costs equal own action (e.g. expenditure on arms)
- actions: decide when to stop t_{i}
- Payoff: $u_{i}\left(t_{i}, t_{k}\right)$

$$
\begin{array}{ll}
=v_{i}-t_{i} & \text { if } t_{i}>t_{k} \\
=-t_{i} & \text { if } t_{i}<t_{k} \\
=v_{i} / 2-t_{i} & \text { if } t_{i}=t_{k}
\end{array}
$$

- Best response function (if there is a smallest cost unit ε):
$\begin{array}{cc}-B_{i}\left(t_{k}\right)=\left\{t_{k}+\varepsilon\right\} & \text { if } t_{k}<v_{i} \\ =\{0\} & \text { if } t_{k} \geq v_{i}\end{array}$
- No equilibrium (in pure strategies)

Problem set \#03

NOTE: I expect that you have tried to solve the exercises before the seminar

1. Osborne, Ex 59.2
2. (Osborne, Ex 62.1)
3. Osborne, Ex 69.1
4. Osborne, Ex 74.2
5. (Osborne, Ex 80.2)
