EC3224 Autumn Lecture #02 Nash Equilibrium

- Reading
 - Osborne Chapters 2.6-2.10, (12)
- By the end of this week you should be able to:
 - define Nash equilibrium and explain several different motivations for it.
 - find the Nash Equilibrium in simple games.
 - identify dominated strategies and solve games through iterative dominance.

Nash Equilibrium - Motivation

- We wish to find **plausible** outcomes in games
 - for example, in order to predict the outcome
- What is a plausible outcome? Possible criteria:
 - No player is **surprised** by the outcome
 - No player acts against her best interest given her expectations
 - Action profile would be repeated if the same people play again, i.e. nobody would want to change his action
 - "no regret"
 - Profile forms a steady state if we randomly rematch players drawn from large populations
 - Avoiding people in the street

Nash Equilibrium - Definition

- In a Nash equilibrium each player chooses according to rational choice given her beliefs about other players' actions and all players' beliefs are correct (consistent)
- Correct beliefs can be justified by
 - experience players interact repeatedly with different partners and hence get to know how the typical player decides (even though he is not informed about the specific partner in this interaction)
 - logical reasoning of what the other player might plausibly do
- since beliefs are correct, they must be shared
 - two players have the same belief about the actions of a third

Nash Equilibrium – Formal Definition

- Let A_i be the set of actions available for player i
- $a = (a_1, a_2, ..., a_i, ...)$ be an **action profile**
- write (a_i', a_{-i}) if *i* chooses a_i', others play according to a
- Then a^* is a **Nash equilibrium** (of a strategic game with ordinal preferences) if for every player *i* and every action all $a_i \in A_i$:

$$u_i(a^*) \ge u_i(a_i, a_{-i}^*)$$

where u_i is the payoff function representing the preferences of player i

- This means given all players follow *a**, no **individual** player would want to deviate
- they could, however, be jointly better off

Example 1: the Prisoner's Dilemma

		Player 2	
		C(ooperate)	D(efect)
Player 1	C(ooperate)	2,2	0,3
	D(efect)	3,0	1,1

- The unique Nash equilibrium is (D,D)
- For every other profile, at least one player wants to deviate
- It is actually irrelevant here what players believe, they prefer D anyway.
- Consider an experiment where players are paid as in the table above. If they do not choose D, does this reject Nash equilibrium?

Example 2: the "Battle of the Sexes"

		Player 2	
		Ball	Theatre
Player 1	Ball	2,1	0,0
	Theatre	0,0	1,2

- There are two Nash equilibria: (Ball, Ball) and (Theatre, Theatre)
- Which one to choose?

Variant of "Battle of the Sexes"

		Player 2	
		Ball	Theatre
Player 1	Ball	2,2	0,0
	Theatre	0,0	1,1

- There are again two Nash equilibria: (Ball, Ball) and (Theatre, Theatre)
- But now the choice seems easy
- Ball equilibrium is "focal point" (Schelling)

Example 3: Matching Pennies

		Player 2	
		Head Tail	
Player 1	Head	1,-1	-1,1
	Tail	-1,1	1,-1

- There is no Nash equilibrium (of the game with ordinal preferences)
- Once we extend the notion of Nash equilibrium, we will find one

Example 4: "Stag-Hunt"

		Player 2	
		Stag Hare	
Player 1	Stag	2,2	0,1
	Hare	1,0	1,1

- There are two equilibria:
- (Stag, Stag) and (Hare, Hare)
- Which equilibrium to choose? Stag could be "focal"
- If there are more players, there are still only two equilibria:
 - either all choose Stag
 - or all choose Hare
- Stag equilibrium might still be focal, but is it plausible?

Strict Nash Equilibrium

- In cases above, each player was always strictly better off than if she deviated
- This is not required by Nash equilibrium
- Example?
- If it holds then we talk of a **strict** Nash equilibrium
- An action profile a* is a strict Nash equilibrium (of a strategic game with ordinal preferences) if for every player i and every action a_i∈A_i: u_i(a*) > u_i(a_i, a_{-i}*)

where u_i is the payoff function representing the preferences of player *i*

Strictly Dominated Strategies

- Finding a Nash equilibrium is sometimes easy because we can exclude **dominated** strategies
- a_i ' strictly dominates a_i if for all strategy profiles a_{-i} of the other players

 $u_i(a_i', a_{-i}) > u_i(a_i, a_{-i})$

- a_i is then strictly dominated
- a strictly dominated strategy **cannot** be chosen in any Nash equilibrium (why?)
- Thus we can start by eliminating strictly dominated strategies
- Example: Prisoner's dilemma, C is strictly dominated

Example: B is dominated

		Player	2
		L	R
	Т	2,3	5,0
Player 1	Μ	3,2	1,1
	В	1,0	4,1

Example: B is dominated

		Player	2
		L	R
	Т	2,3	5,0
Player 1	М	3,2	1,1
	В	1,0	4,1

		Player	2
		L	R
	Т	2,3	5,0
Player 1	Μ	3,2	1,1
	<u> </u>	1,0	4,1

Dominant strategies

- If a strategy strictly dominates **all** other strategies, it is **strictly dominant**
- a_i' is a strictly dominant strategy for player *i* if for all $a_i \neq a_i'$ and all strategy profiles a_{-i} of the other players

 $u_i(a_i', a_{-i}) > u_i(a_i, a_{-i})$

- if a player has a strictly dominant strategy, this **must** be played in a Nash equilibrium (why?)
- Then we can fix a_i' and continue by finding the other players' best responses

Example: L is Strictly Dominant

		Player		
		L	С	R
	Т	2,3	2,2	5,0
Player 1	Y	3,5	5,3	3,1
	Z	4,3	1,1	2,2
	В	1,2	0,1	4,0

Example: L is Strictly Dominant

		Player		
	Т		2,2	5,0
Player 1	Y	3,5	5,3	3,1
	Z	4,3	1,1	2,2
	В	1,2	0,1	4,0

Example: L is Strictly Dominant

		Player		
			C	R
	Т		2,2	5,0
Player 1	Y	3,5	5,3	3,1
	Ζ	4,3	1,1	2,2
	В	1,2	0,1	4,0

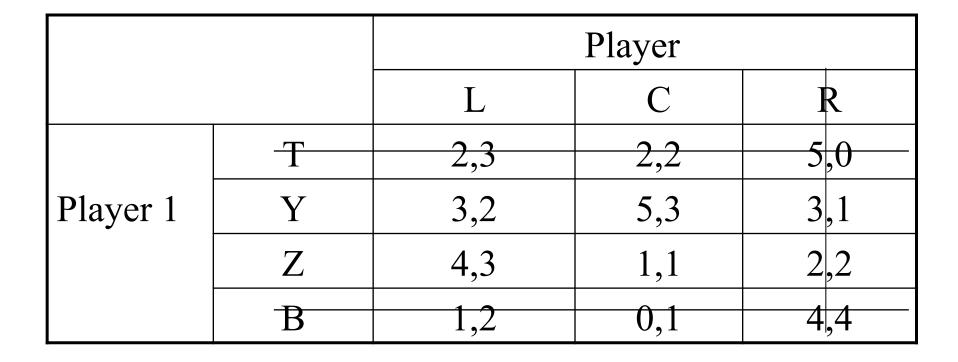
Iterated Elimination of Dominated Strategies

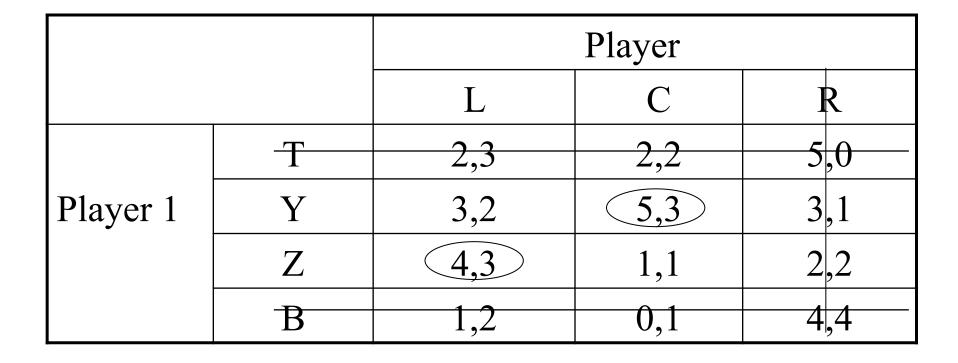
- When searching for Nash equilibria, we can eliminate strictly dominated strategies
- What happens then?
- If after eliminating strictly dominated strategies a player has again a strictly dominated strategy, this cannot be played in any Nash equilibrium (why?)
- Continue...
- All Nash equilibria must be among the surviving profiles, but not all surviving profiles are Nash-equilibria

		Player		
		L	С	R
	Т	2,3	2,2	5,0
Player 1	Y	3,2	5,3	3,1
	Ζ	4,3	1,1	2,2
	В	1,2	0,1	4,4

		Player		
		L	С	R
	Т	2,3	2,2	5,0
Player 1	Y	3,2	5,3	3,1
	Ζ	4,3	1,1	2,2
	B	1,2	0,1	4,4

		Player		
		L	С	R
	Т	2,3	2,2	5,0
Player 1	Y	3,2	5,3	3,1
	Ζ	4,3	1,1	2,2
	B	1,2	0,1	4,4





Weakly Dominated Strategies

• *a_i* **weakly dominates** *a_i* if for all strategy profiles *a_{-i}* of the other players

 $u_i(a_i', a_{-i}) \ge u_i(a_i, a_{-i})$

and there is at least one a_{-i} such that

 $u_i(a_i', a_{-i}') > u_i(a_i, a_{-i}')$

- a_i is then weakly dominated
- a weakly dominated strategy **can** be chosen in a Nash equilibrium
- while (iterated) elimination of weakly dominated strategies is plausible and sometimes leads to a Nash equilibrium, it is problematic because we may eliminate equilibria and the order of elimination matters

Best Response Functions

- Above, we could find the equilibrium just by going through the few possible action profiles.
- This is getting messy if there are many available actions (in particular if there are infinitely many)
- Consider **best response function** of *i*:
- $B_i(a_{-i}) = \{a_i \in A_i: u_i(a_i, a_{-i}) \ge u_i(a_i', a_{-i}) \text{ for all } a_i' \in A_i\}$
- Set-valued ("correspondence"), each member of B_i
 (a_{-i}) is a best response to a_{-i}

Best Response Functions

Proposition: *a** is a **Nash equilibrium** if and only if

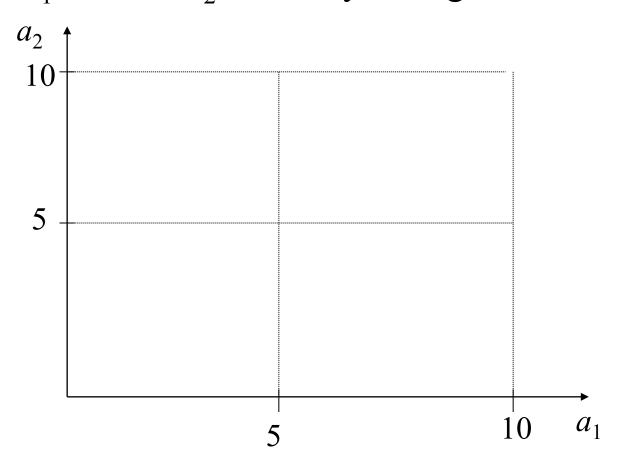
 $a_i^* \in B_i(a_{-i}^*)$ for every i (1)

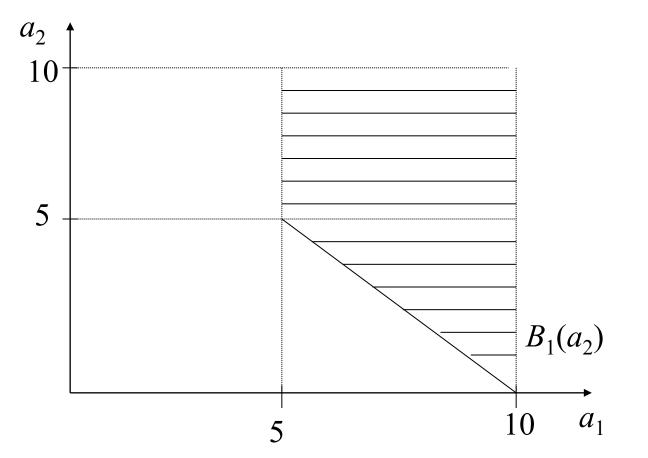
If all players have unique best responses for each combination of others' actions, i.e.

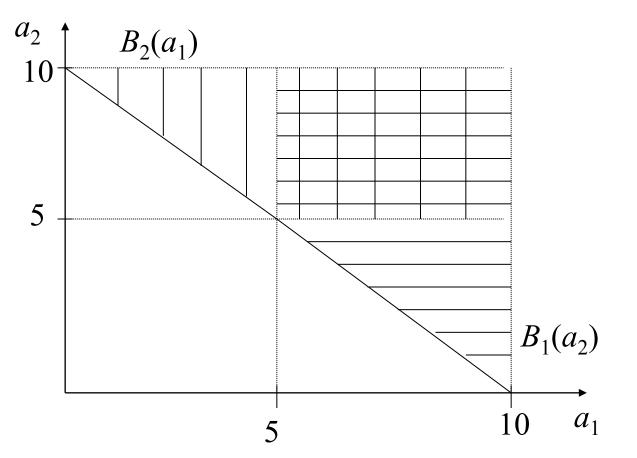
 $B_i(a_{-i}) = \{b_i(a_{-i})\} \text{ then (1) becomes}$ $a_i^* = b_i(a_{-i}^*) \text{ for every } i \qquad (2)$

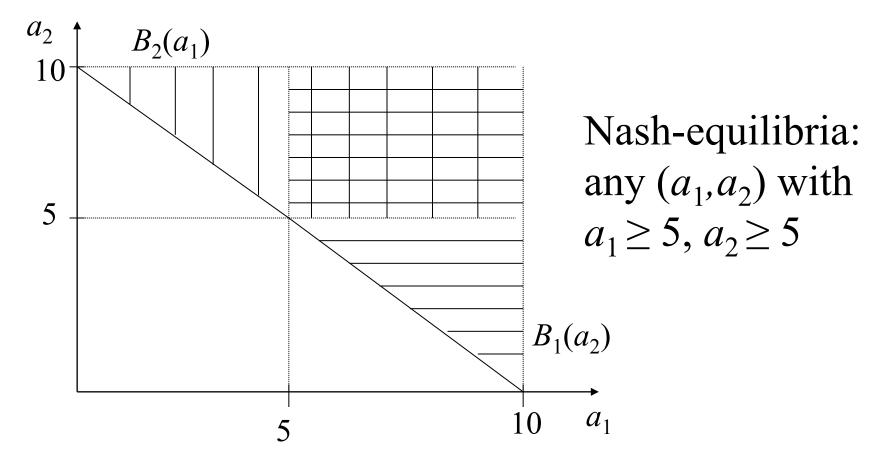
To find Nash equilibrium:

- find best response functions for each player
- find *a** that satisfies (1) (or (2) if best responses have only one value)









Symmetric Games

- Nash equilibrium of *n*-player games corresponds to steady state in game between randomly drawn members of *n* populations
- What if there is no difference between players except the label?
- i.e. players are from a **single** population?
- Symmetric game: $A_1 = A_2$ and $u_1(a_1, a_2) = u_2(a_2, a_1)$
- Example: Prisoner's dilemma, stag-hunt, but not BoS or matching pennies
- if players are from the same population, in steady state all choose the same action
- *a** is a symmetric **Nash equilibrium** (of a strategic game with ordinal preferences) if it is a Nash equilibrium and *a_i** is the same for all *i*

Symmetric Games

• symmetric games do not need to have symmetric equilibria

	Х	Y
Х	0,0	2,1
Y	1,2	1,1

- NE: (X,Y) and (Y,X).
- Could we expect these as steady states in a single population?

Problem set #02 NOTE: I expect that you have tried to solve the exercises *before* the seminar

- 1. Find the Nash equilibria in the bank-run game. Discuss why one equilibrium is becoming more plausible if the number of players increases
- 2. Osborne, Ex 27.1
- 3. Osborne, Ex 27.2
- 4. (Osborne, Ex 31.1. Is any of the equilibria focal? What do you think happens if this game is played in an experiment in a group of 2 people? What if it is played in a group of 9 people?)
- 5. Osborne, Ex 34.2
- 6. (Osborne, Ex 34.3)
- 7. Osborne, Ex 42.2
- 8. Osborne, Ex 48.1
- 9. Write down a 3x3 game matrix where a Nash-equilibrium is eliminated by iterated elimination of weakly dominated strategies and this depends on the order of elimination