Signalling games

Pooling equilibrium

- Since both types have beer, beliefs given beer are given by nature
- EU(duel | beer) $=0.1 * 1+0.9^{*} 0$
- EU(don't | beer) $=0.1^{*} 0+0.9^{*} 1$
- Prefer not to!
- Beliefs given quiche are arbitrary
- Have to be such that P2 prefers to duel, so that P1 doesn't want to deviate from beer
- belief that player is weak given quiche is q
- $\quad E U$ (duel | quiche) $=q$
- $\quad E U($ don' t | quiche) $=1-\mathrm{q}$
- If $q>1 / 2$, P2 duels after observing quiche
- No profitable deviation of P1

Separating equilibrium

- Since every info set is reached in eq, beliefs given by Bayes' law
- If I see quiche, I know it's a weak type
- If I see beer, I know it's a strong type
- P2 chooses optimally given these beliefs, so he fights given quiche, doesn't given beer
- Deviations don't pay for P1
- Weak would get 0.5 instead of 1
- Strong would get 0 instead of 3

