LECTURE 8: NOISY BEHAVIOUR, QUANTAL RESPONSE EQUILIBRIA AND LEVELK

Reading

- Goeree & Holt, Ten little treasures, 2001 AER
- McKelvey & Palfrey 1995 GEB
- Nagel 1995 AER
- Learning outcomes
 - Understand how expected payoff functions can influence play
 - Be familiar with Quantal Response Equilibria and methods to calculate them

Auction with Resale

Georganas 2011

- Standard English auction for one unit
 - With n bidders
 - IPV in [0,100]
- Twist: there is a second stage where winner can resell the good to an other bidder
 - Chooses a reserve price
 - Other bidders can see and decide whether they are interested
 - If more than 1 interested there is a new English auction

Auctions with Resale: result

Explanation

Figure 4: Expected utilites in ENG (upper two figures) and COMP (lower two) without and with noise (normally distributed with a σ of 9). The curves are drawn for private use value signals equal to 20, 30, 40 and 50. In the lower left panel utility is very flat but still maximized at a bid equal to value.

Equilibrium plus noise

- Noisy equilibrium is not the same as Nash + mistakes
 - Noise can drive behavior very far away from equilibrium
 - A player's errors can change another's best responses
 - Games of this type
 - Guessing games
 - Auctions with resale
 - Centipede
 - etc

Quantal response equilibrium

McKelvey - Palfrey 1995

- An equilibrium concept that systematically introduces noise
- Nash equilibrium= consistent beliefs + best response
- In QRE players play better responses
 - Strategies with higher expected payoff chosen more often
 - But not with probability one
 - Another interpretation: avoiding costly mistakes

The error structure in QRE

- Luce (1959):
 - response probabilities are an increasing function of the strength of the stimulus f(U)
 - 2. probabilities of all possible choices have to add up to one

$$p_i = f(U_i)/\Sigma f(U)$$

- For practical purposes we need to assume a specific functional form
 - Simplest: linear $p_i = U_i/\Sigma U$
 - What about negative payoffs?
 - logistic errors $p_i = e^{-\lambda U}/\Sigma e^{-\lambda U}$
- Quantal Response Equilibrium is then a fixed point same as Nash
 - I have some beliefs
 - Given beliefs I can calculate my expected payoffs
 - Transform payoffs using logit or linear and play according to that
 - Equilibrium when my beliefs consistent with (noisy) play of others

QRE example in normal form games

	L	R
U	3,3	0,0
D	0,0	1,1

- Row has belief that column plays left with prob λ
- Expected payoff is then
 - $E\pi[U]=3\lambda+(1-\lambda)0$
 - $E\pi[D]=\lambda 0+(1-\lambda)1$
- Quantal Response with Luce errors
 - Prob of playing up $\mu = E\pi[U]/(E\pi[U] + E\pi[D])$
 - $\mu=3\lambda/(2\lambda+1)$
- Do same for Column
 - Game is symmetric, so $\mu=3\mu/(2\mu+1)$
 - $\mu=0$ or $\mu=1$

How to calculate QRE

- QRE yields a system of equations
- For large strategy spaces impossible to calculate algebraically
- Numerical methods needed
 - 1. Tracing method (see gambit software)
 - 2. Iteration method

Fitting QRE to data

- For applications the logit version is the most flexible
 - λ can be interpreted as degree of rationality, as for λ->∞ QRE approached Nash
- The idea is to fit a QRE to the data using maximum likelihood
 - Find the λ that makes choice probabilities most likely
 - E.g. if people play right with probability ½ find λ such that the associated QRE predicts play of right with probability as close to ½ as possible

QRE and Auctions with Resale

QRE and first price auctions

(Goeree, Holt & Palfrey 2002 JET)

Discrete value first price auctions

Low value treatment: Values 0, 2, 4, 6, 8, 11

High value treatment: Values 0, 3, 5, 7, 9, 12

Figure 1. Expected Loss as a Function of Bid for the Two Treatments

QRE and first price auctions

QRE and all pay auctions

(Anderson, Goeree & Holt JPE 1998)

- All pay auction: highest bidder gets good, everyone pays bid
 - good model of contests, lobbying etc
- People rarely play equilibrium
 - Mixed strategy eq. where expected payoffs are zero
- QRE predicts
 - Overdissipation of rents
 - rent dissipation to increase with n

Other games with QRE analysis

- Centipede
- Alternating offer bargaining
- Coordination games
- etc
- Camerer, Teck-Hua Ho, and Juin Kuan Chong (2004)
 - Quantal response equilibrium (QRE), a statistical generalization of Nash, almost always explains the direction of deviations from Nash and should replace Nash as the static benchmark to which other models are routinely compared.

What happens when people first see a game

- QRE is supposed to model behavior after people understand the game, play for some time but still respond noisily
- What about the first response to a game?
- Start with normal form...

Undercutting game

	1	2	3	4	5	6	7
1	1	10	0	0	0	0	-11
	1	-10	0	0	0	0	0
2	-10	0	10	0	0	0	0
	10	0	-10	0	0	0	0
3	0	-10	0	10	0	0	0
	0	10	0	-10	0	0	0
4	0	0	-10	0	10	10	10
	0	0	10	0	-10	-10	-10
5	0	0	0	-10	0	0	0
	0	0	0	10	0	0	0
6	0	0	0	-10	0	0	0
	0	0	0	10	0	0	0
7	0	0	0	-10	0	0	-11
	-11	0	0	10	0	0	-11

2 person Guessing game

- Two player Games
 - Asymmetric
 - parameterized by a lower bound ai ≥ 0, upper bound bi > ai, and target pi > 0 for each player
 - Strategies are given by si ∈ [ai,bi] and player i is paid according to how far her choice is from pi times sj, denoted by ei = | si - pisj |
 - 15 (11/200)ei , if ei≤200
 - 5 (1/200) ei, if ei \in (200, 1000]
 - Zero, if e i ≥ 1000
- Example 1: p1 ([100, 500], 0.5), p2 ([100, 900], 1.3)
- Example 2: p1 ([100, 500], 0.7), p2 ([300, 900], 1.3)

The classic guessing game

(Nagel 1995 AER)

 N players, can say a number [0,100], winner is the person closest to 2/3 times the average number

The classic guessing game

- Theory is very clear: all choose 0
- Actual behavior chaotic?
 - No? there is a structure through the spikes: 22,33, 0, 67, 100
 - This can be explained by a model of iterated best reply (a concept of game theory)
 - Start assuming others play random
 - L1 best responds to that, L2 to L2 etc

Using models of bounded rationality

- Level k model also predicts aggregate behaviour well in other lab games
 - 2x2 games, 3x3 games, auctions, hide-and-seek games...
- Level k can even explain the experience of the ECB with liquidity auctions
 - Banks demand liquidity ECB supplies, if total demand lower than supply there is a proportional rationing rule
 - Nash equilibrium if supply<demand: demand infinity!</p>
 - What actually happened?

Level k Consistence: Aggregate Results

Undercutting games

Guessing games

Are players consistent?

Georganas, Healy and Weber 2011

2 person guessing game results

FIGURE VII. Histograms of actions in (A) GG6 and (B) GG7 along with logistic response functions for each level assuming $\lambda = 1$.

Good news? Bad news?

Switching

From	n ↓ To →	L0	L1	L2	L3	Nash
	L0	8.9%	48.1%	17.0%	12.6%	13.3%
	L1	13.5%	50.2%	18.2%	11.4%	6.7%
	L2	11.9%	45.7 %	24.4%	10.6%	7.3%
	L3	13.6%	44.0%	16.4%	14.4%	11.6%
	Nash	21.2%	38.2%	16.5%	17.1%	7.1%
	Overall	13.2%	47.3%	18.9%	12.3%	8.3%

TABLE V. Markov transition between levels for the six standard twoperson guessing games.

Problem Set

- 1. Find the QRE for the normal form game in slide 9 using the logit specification (for all λ)
 - Algebraically
 - Numerically