Experimental Economics

(and bounded rationality)
Sotiris Georganas

Lecture 3: Social Norms, Cooperation and Public Goods

Public goods

Reading

- Holt, "Markets, Games and Strategic Behavior", ch. 14
- Ledyard (1995) "Public Goods A Survey of Experimental Research" in Kagel & Roth (Eds.) Handbook of Exp Econ
- Fehr & Gächter (2000) Cooperation and Punishment in Public Goods Experiments American Economic Review
- Falkinger, Fehr, Gächter and Winter-Ebmer (2000; "A Simple Mechanism for the Efficient Provision of Public Goods - Experimental Evidence", American Economic Review
- Frank, Gilovich. and Regan (1993); "Does Studying Economics Inhibit Cooperation?", Journal of Economic Perspectives

Public Goods

- Definition: Non rivalrous/non excludable (Samuelson 1954)
- Problem: free riding!
- Why?
- A. Smith (1776): Street lamps
 - One person enjoys, does not detract from other person's enjoyment
 - Can't charge every person for amount they use

More general: cooperation problems

- Cooperative hunting and warfare (important during human evolution)
- Exploitation of common pool resources
- Clean environment
- Teamwork in organizations
- Collective action (demonstrations, fighting a dictatorship)
- Voting
- Basic economic problem
 - Cooperative behaviour has a positive externality.
 - Hence, private marginal benefit is smaller than social marginal benefit → underprovision relative to the efficient level.

A public good game

- *n* players
- Contribute x out of endowment ω
- Contribution costs c(x)
- Total contributions converted to output per capita o(X), where X=Σx_i
- A person's utility $U_i = \omega c(x) + o(X)$
 - O' is also called marginal per capita return (MPCR)
- Simple Linear Case: $U_i = \omega x_i + mX$
- Individually rational strategy:
 - Corner solution: invest all if m>1, else nothing
- Efficient solution (collectively rational):
 - Total utility $U_t = \Sigma u_i = \Sigma \omega \Sigma x_i + m \Sigma X$
 - $dU_t/dx_i = -1 + mn$
 - Invest all if m>1/n, else nothing

Public goods: Experimental results

Hermann et al. (2008) *Science*

N=4 MPCR = 0.4 y = 20 Partner design

- Contributions start relatively high
- Fall over time
- Culture obviously matters

Group size

Isaac and Walker (1988) QJE

experiment	Group size	MPCR
4L	4	0.3
4H	4	0.75
10L	10	0.3
10H	10	0.75

Mitigating group size effects

- In minimum effort games
 - N people choose effort, outcome depends on the smallest effort
 - $U = \min_{j} \{x_{j}\} cx_{i,j} c < 1$
 - Any common effort level is Nash
 - The greater n, the lower the effort
- Weber (2006) Managing growth to achieve efficient coordination in large groups, AER
 - Add people one by one to the group
 - Effort remains much higher than if you started off with a big group
- In public goods?

The big question

- People in real societies do seem to be cooperating (to various degrees)
- How can this happen?
 - Punishment (as in experiment)
 - Social norms?
 - Genetic predisposition to cooperate, against individual rationality?
 - Communication?

Public goods with punishment

Hermann et al. (2008) *Science*

N=4 MPCR = 0.4 y = 20 Partner design Punishment 3 times costlier to punisher than pubished

- Contributions start relatively high and remain there
- Sometimes even go up!
- Culture obviously matters again

Excursus: evolutionary theory

- Why have people evolved to be cooperative when it's a dominated strategy?
 - definitely not evolutionarily stable (Maynard Smith and G. Price, Nature, 1973)
- A group selection argument (although this might upset Richard Dawkins)
 - Two villages in the whole world, Argavars and Bualogros
 - Weather and food supply very unstable
 - A's are cooperating, B's don't
 - Who survives?

Communication in public goods

Treatment C: Communication between periods If rationality common knowledge, no effect of communication... So?

Ongoing project: Mission

- Some people just want to contribute to the public good
 - have a sense of duty or mission
 - modelled as extra utility when "doing the right thing"
- How to measure?
- Implications?
 - Cascades
 - Policy implications (raise the minimum sense of duty in the population)

Why do people cooperate?

- Strategic cooperation(Kreps et al., JET 1982)
 - There are strategic (rational) and tit-for-tat players.
 - Strategic players cooperate (except in the final period) if they believe they are matched with tit-for-tat players.
 - Strategic players mimic tit-for-tat players (i.e. they cooperate) to induce other strategic players to cooperate.
 - Holds for certain parameter values.
 - Test? (e.g. Fehr & Gächter 2000, Croson 96, Andreoni 88)
- Social preferences
 - Altruism, "warm glow", "efficiency"-seeking motives.
 - Conditional cooperation, Reciprocity.
- Maladaption

Strategic cooperation: partners vs strangers

Fehr & Gaechter 2000 AER

parameters: N=4 MPCR = 0.4 y = 20

6 partner groups 2 stranger sessions with 6 groups each

Why does cooperation decline over time?

- Endogenous errors?
 - More on that later
- Strategic cooperation if group composition is constant?
- Social preferences: conditional cooperation
 - Subjects are conditionally cooperative and learn that there are free-riders in the group.
 - As a response they punish other group members by choosing lower cooperation levels.

How to examine conditional cooperation

- How does contribution vary over time: contribution(t) = f
 (contribution(t-1)).
 - Problem: How can we disentangle the general decline of cooperation from conditional cooperation?
- Changes in contributions depend on whether the other's contributions were above or below the own contribution. (Keser, van Winden, 2000)
- Ask subjects for a belief about the other players' contribution.
 - Does the contribution depend on the belief? (Croson, 1998)
 - Problem: False consensus effect (assuming that what I do is "normal")
- Allow the correction of the decision.
 - Kurzban & Houser (2002); Levati & Neugebauer; (2001); Güth, Levati & Stiehler (2002)
 - Problem: There is an incentive to choose higher contributions for strategic reasons.

Direct evidence of cond. coop

- Fischbacher, Gächter & Fehr (2001) Econ Lett
- One-shot game
- Subjectschoose...
 - An unconditional contribution
 - A conditional contribution, i.e., for every given average contribution of the other members they decide how much to contribute.
- At the end one player is randomly chosen. For her the contribution schedule is payment relevant, for the other three members the unconditional contributions is payment relevant.
 - A selfish player is predicted to always choose a conditional contribution of zero.
 - Note that a selfish player may have an incentive to choose a positive unconditional contribution if she believes that others are conditionally cooperative.

Average own contribution level for each average contribution level of other group members (Source: Fischbacher, Gächter & Fehr EL 2001)

Average contribution level of other group members

Contribution other group members
Contribution schedules per subject

Results

- Unconditional cooperation is virtually absent.
- Heterogeneity:
 - Roughly half of the subjects are conditional cooperators.
 - Roughly one third is selfish.
 - A minority has a "hump-shaped" contribution schedule
- Question: Can the observed pattern of conditional cooperation explain the unraveling of cooperation?
 - Assume adaptive expectations. Subjects believe that the other group members behave in the same way as in the previous period.
 - This implies that over time the conditional cooperators contribute little although they are not selfish.
 - This result holds qualitatively for any kind of adaptive expectations.