Industrial Economics - Sotiris Georganas

R\&D Problem Set - Solutions

Problem 1

a) A scientist maximises her expected payoff. The expected per period revenue depending on effort is

$$
r=2 \alpha e
$$

Given that the patent lasts L years we have $R=L r$ so the expected utility given effort e

$$
E U(e)=L * 2 \alpha e-2 e^{2}
$$

Differentiate w.r.t. e

$$
\text { FOC: } 2 L \alpha=4 e \Rightarrow e=\frac{L \alpha}{2}
$$

b) Number of unpatented inventions

$$
\chi=q \int_{o}^{0.5} 2 \alpha f(a) d a
$$

Number of patented inventions

$$
\begin{gathered}
\varphi=(1-q) \int_{0}^{0.5} 2 \alpha \frac{L \alpha}{2} f(a) d a=(1-q) \int_{0}^{0.5} 2 \alpha \frac{L \alpha}{2} 2 d a=(1-q) \int_{0}^{0.5} 2 L \alpha^{2} d a= \\
(1-q)\left[\frac{2}{3} L \alpha^{3}\right]_{0}^{0.5}=(1-q) L \frac{2}{24}
\end{gathered}
$$

the planner's utility is then

$$
U(L)=3(\varphi+4 \chi)-L^{2}=3\left((1-q) L \frac{1}{12}+4 \chi\right)-L^{2}
$$

Differentiating w.r.t. L
(note there is no L in χ so there is no reason to calculate it explicitly)

$$
\text { FOC: } L=(1-q) \frac{1}{4}
$$

c) The higher the number of passionate researchers who are not interested in money, the lower L is. It makes sense, if nobody needed a patent to do research the optimal length L would be 0 .

However, L grows in the average ability, which can be seen if you repeat the whole exercise assuming that the average ability is equal to 0.5 .
d) No it won't, since scientists have made all the effort already, lowering the patent length does not influence their incentives but it does lower the penalty L^{2} in the planner's utility function.

This what we call the time-inconsistency problem of the policy maker, she would like to take back commitments made in previous periods.

