Price Discrimination: Part 1

Sotiris Georganas

January 2010

> "The textbook monopolist is a wasteful agent."

1 Pricing tactics

- Pigou's (1920) taxonomy of price discrimination:
- First-degree (or perfect) price discrimination:
* The producer discriminates across sold units and consumers captures the whole consumer surplus.
- Second-degree price discrimination:
* Per-unit prices of the good differ, but these prices are the same for all consumers (e.g., quantity discounts).
- Third-degree price discrimination:
* Per-unit prices of the good are the same for a given consumer, but different consumers pay different prices (e.g., student discounts).
- Commodity bundling

2 Price discrimination

Definition 1 A producer price-discriminates when two units of the same physical good is sold at different prices, either to the same consumer or to different consumers.

- Note that the definition includes the quantity discount case ("buy 3 pay for 2 ").
- The possibility of price discrimination is closely linked to the possibility of arbitrage.

2.1 Arbitrage

- Transferability of the commodity (between consumers).
- Transferability of demand (between offered bundles).

3 Perfect price discrimination (1st degree)

- The monopolist succeeds in capturing the entire consumer surplus.

Version 1

- Each consumer demands one unit of the monopolist good,
- Consumer i 's willingness to pay for the good is v_{i}.
- The monopolist observes v_{i} and offers to sell a unit of the good to consumer i at the (individual) price $p_{i}=v_{i}$, leaving the consumer just indifferent.

Version 2

- Assume there are a large number of identical consumers with downward sloping demand curves.
- Assume that the monopolist has a constant marginal cost c. (Fig. 1)

1. The monopolist can make a take-it-or-leave-it offer to sell q^{c} units to consumer i at the total price $A+B$. The consumer is just willing to accept.
or
2. The monopolist can set an access charge of A and then charge the price $p^{c}=c$ for each unit sold. The consumer accepts to pay the access charge and buys q^{c} units.

- Perfect price discrimination gives the maximum possible profits to the monopolist, but it also requires a lot of information; he has to know the individual demands, and he must be able to prevent resale of the good
- Examples?

Fig 1

4 Multimarket price discrimination (3rd degree)

- Multimarket price discrimination refers to a situation where the monopolist can divide the market into m groups (or market segments) on the basis of some observed information and can charge a different prices to the different groups.
- Requires that arbitrage between the groups is not possible.

4.1 Analysis

- Assume
- two market segments with inverse demands equal to $p_{1}\left(q_{1}\right)$ and $p_{2}\left(q_{2}\right)$ respectively.
- The firm has a general cost function $C\left(q_{1}+q_{2}\right)$, where q_{i} is the amount sold in market $i, i=1,2$.
- The firm solve maximizes the total profits from the two market segments.

$$
\max _{q_{1}, q_{2}}\left\{p_{1}\left(q_{1}\right) q_{1}+p_{2}\left(q_{2}\right) q_{2}-C\left(q_{1}+q_{2}\right)\right\}
$$

- The optimal solution involves setting the marginal revenue in each market segment equal to the marginal cost:

$$
\begin{aligned}
& M R_{1}\left(q_{1}\right) \equiv p_{1}\left(q_{1}\right)+p_{1}^{\prime}\left(q_{1}\right) q_{1}=C^{\prime}\left(q_{1}+q_{2}\right), \\
& M R_{2}\left(q_{2}\right) \equiv p_{2}\left(q_{2}\right)+p_{2}^{\prime}\left(q_{2}\right) q_{2}=C^{\prime}\left(q_{1}+q_{2}\right) .
\end{aligned}
$$

- Note that this implies that $M R_{1}\left(q_{1}\right)=M R_{2}\left(q_{2}\right)$.
- Note also that the marginal revenue can be expressed in terms of the demand elasticity

$$
\begin{aligned}
M R_{i}\left(q_{i}\right) & =p_{i}\left(q_{i}\right)+p_{i}^{\prime}\left(q_{i}\right) q_{i} \\
& =p_{i}\left(q_{i}\right)\left[1+p_{i}^{\prime}\left(q_{i}\right) \frac{q_{i}}{p_{i}\left(q_{i}\right)}\right] \\
& =p_{i}\left(q_{i}\right)\left[1-\frac{1}{\left|\varepsilon_{i}\left(q_{i}\right)\right|}\right]
\end{aligned}
$$

where

$$
\varepsilon_{i}\left(p_{i}\right)=\frac{d q_{i}}{d p_{i}} \frac{p_{i}}{q_{i}}
$$

- But then $M R_{1}\left(q_{1}\right)=M R_{2}\left(q_{2}\right)$ implies that, across the two markets,

$$
p_{1}\left[1-\frac{1}{\left|\varepsilon_{1}\right|}\right]=p_{2}\left[1-\frac{1}{\left|\varepsilon_{2}\right|}\right]
$$

from which it follows that the monopolist sets a higher price in the market segment with least price elastic (sensitive) demand:

$$
p_{1}>p_{2} \Leftrightarrow\left|\varepsilon_{1}\right|<\left|\varepsilon_{2}\right| .
$$

- Intuitively, if there two groups of beer consumers, heavy drinking guys and their female companions, the monopolist will charge the guys more (does this explain ladies' nights?)

5 Spot the discrimination

- Concert ticket price below equilibrium level
- Disneyland (entry fee + prices per ride)
- Bulk discounts in supermarket
- Student or senior prices for books, travel etc
- Cable or phone compay pricing packages
- Different prices for lunch or dinner at same restaurant

6 Welfare aspects of perfect- and multimarket price discrimination

Perfect price discrimination

- Perfect price discrimination leads to an efficient allocation (the good is produced whenever the marginal willingness to pay exceeds the marginal cost).
- It does, however, have distributional effects (profits rather than consumer surplus).

Multi-market price discrimination

- Multi-market discrimination increases the monopolist's profits; however, the impact on aggregate efficiency is not clear.
- Does multi-market price discrimination lead to a more efficient allocation than non-discrimination?
- Sources of inefficiency under multi-market price discrimination:

1. Output inefficiency: price exceeding marginal cost implies "too low output".
2. Consumption inefficiency: Since consumer pay different prices, each consumer's marginal willingness to pay is not the same.

- If the monopolist does not discriminate, then only the first source of inefficiency is present, but this source may then be more severe. Figs. 2 and 3.
- The discriminating monopolist sets a price p_{1} in market 1 and price p_{2} in market 2. This causes a total deadweight loss equal to the sum of B and C.
- The non-discriminating monopolist sets a (single) price p and causes a deadweight loss equal to A.
- We cannot unambiguously say which deadweight loss $(B+C$ or $A)$ is larger.
- General rules of thumb:
- If discrimination increases total output, then discrimination may be good for efficiency.
- If non-discrimination leads to a price such that some group does not buy at all, then discrimination may be good.
- The closer imperfect price discrimination is to perfect price discrimination, the more likely it is that price-discrimination leads to a more efficient outcome. In other words, the better the signal allows the monopolist to sort consumers, the more likely it is that price-discrimination is good for efficiency.

Fig 2

Fig 3

7 Screening: Introduction

- Suppose that the monopolist does not receive any signal of the consumer's demand (i.e. he cannot observe age etc.); he cannot tell the consumers apart-he only knows that there is heterogenous demand.
- Does this mean that the monopolist cannot do better than to charge a single price to all?
- The answer is in general no - provided that arbitrage can be prevented.
- So what can he do? He can:
- Offer a menu of bundles to choose from.
- Take into account the possibility of "personal arbitrage".
- This will typically involve quantity-discounts. But we leave this for next lecture...

8 What to remember from this lecture

- What is price discrimination. How arbitrage can limit the scope for price discrimination.
- Forms of perfect price discrimination.
- Multimarket price discrimination and the inverse elasticity rule.
- Efficiency aspects of perfect and multimarket price discrimination.
- The problem of screening and the transferability of demand.

