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Abstract

For any infectious disease, including the Covid-19 pandemic, timely, accurate epidemic

figures are necessary for informed policy. In the Covid-19 pandemic, mismeasurement

can lead to tremendous waste, in health or economic output. “Random” testing is

commonly used to estimate virus prevalence, reporting daily positivity rates. How-

ever, since testing is necessarily voluntary, all “random” tests done in the field suffer

from selection bias. This bias, unlike standard polling biases, goes beyond demograph-

ical representativeness and cannot be corrected by oversampling (i.e. selecting people

without symptoms to test). Using controlled, incentivized experiments on a sample

of all ages, we show that people who feel symptoms are up to 42 times more likely

to seek testing. The testing propensity bias leads to sizeable prevalence bias: even

under costless testing, test positivity can inflate true prevalence fivefold. The inflation

factor varies greatly across time and age groups, making intertemporal and between

nation comparisons misleading. We validate our results using the largest population

surveillance studies of Covid-19 in England, and indeed find that the bias varies in-

tertemporally from 4 to 23 times. We present calculations to debias positivity, but

importantly, suggest a parsimonious approach to sampling the population that by-

passes the bias altogether. Estimates are both real-time and consistently close to true

values. Our results are relevant to any epidemic, besides Covid-19, where carriers have

informative beliefs about their own status.
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1 Introduction

How to measure prevalence for infectious diseases? In the Covid-19 pandemic, health agencies

and lay citizens alike, closely watch two measures derived from daily testing, the absolute

number of recorded cases and the percentage of positives in the tested population. These

numbers influence individual decisions but also official measures against the pandemic, with

a profound impact on public health and the economy.

In this paper we claim that such commonly used measures are fundamentally flawed,

because they ignore the demand side for testing. In virtually all countries in the world,

testing is voluntary, leading to self-selection bias. People are likelier to self-select into testing

if they have reasons to believe they might be having Covid-19 (such as, e.g. if they have

symptoms or if they are exposed to a high-risk environment). We experimentally show there

is a substantial bias in testing, driven by self-selection and demonstrate how the testing bias

translates into biased prevalence estimates. We then validate our results on how the accuracy

of prevalence estimation is affected by the bias, using external data. Finally, we propose a

novel, fast and relatively economical method to estimate prevalence in real time, using a

combination of polling methods and characteristics of endogenously done virus testing.

Let us start with a simple illustration of the problem for both economic policy makers and

health agencies, using a real example from a European country. During Christmas all shops

and schools were closed. On January 18 2020 the government allowed elementary schools

and the retail sector to open (for in-store buys). About a week later, recorded cases started

to rise. On the 29th of January, 941 cases were recorded, almost double the cases a week

before (506). Ignoring standard statistical questions of significance, two questions arise: is

that rise in cases a clear sign of a worsening disease, and can we blame the retail sector or

schools? Due to the selection bias, even the first question is hard to answer. At the same

time as cases rose, testing rose too. The number of tests on 29 January was about double

the amount of tests on the 22nd. Actually, test positivity is similar between these dates. But

our self-selection argument implies that the number of tests is endogenous. Higher disease
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prevalence leads to higher demand for testing. As we will demonstrate, the self-selection

bias changes over time, making comparisons using test positivity data meaningless in many

cases.

The self-selection bias is idiosyncratic and varies with age, which complicates answering

the second question too, how to tell whether schools or shops are to blame. One would

think to (and indeed, health agencies do) compare test positivity among school pupils and

middle aged people who went shopping, to see what channel of infection was more important.

But our experiments show that demand for testing differs strongly by age, and also, virus

symptoms affect this demand differentially. This means we cannot compare positivity across

age groups either.

The use of standard test positivity or the number of recorded cases, to compare preva-

lence over time or across age groups, is rarely advisable. In the paper we use incentivised

controlled experiments to estimate the size of the testing bias and calculate the correspond-

ing prevalence bias. Interestingly the bias is estimated to be drastically different by age

groups (as mentioned above) and to also rely greatly on two important characteristics of the

testing procedure: waiting times and cost.

Our testing bias estimates can be used to calculate the prevalence bias, and debias the

current prevalence estimates in the field (as derived from test positivity). As long as the

characteristics of the testing procedures are known by the health agencies and published

(unfortunately, the former is rare and the latter is most often not the case), we sketch

the parameter estimations necessary for debiasing. Given that we have estimates by age,

simulations can be done for countries with different demographic structures too. Of course

accurately estimating all necessary parameters presents challenges of its own.

To fix all the problems with measurement, we suggest a novel method to bypass the

self-selection bias altogether, with an estimation procedure that is at the same time faster,

more accurate and more feasible than current methods. The idea is to poll a representative

sample about their symptoms, and get the symptoms-to-virus conversion parameters from
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existing tests.1

To give an overview of the experimental results, we find that the commonly used “test

positivity” measure may inflate actual prevalence by up to 5 times, even if testing is provided

at zero cost. If Covid-19 tests are costly for the testee (as is common), this inflation factor

or prevalence bias can be much higher. To make estimation harder, the prevalence bias is

not constant, but rather depends strongly on actual prevalence. This means that we cannot

apply a fixed adjustment to test positivity measures, and such measures cannot be used

to compare prevalence across countries, as is commonly done. To validate our results, we

compare prevalence estimates from the REACT and ONS studies in the UK, to test positivity

ratios at the same dates (Riley et al., 2021). As predicted by our calculations, the prevalence

bias is indeed positive, very large and time varying, ranging from 3.8 to 23.6 in the different

waves of the study. To say it another way, our estimates of the testing bias and calculations

of how this translates to a prevalence bias, explain why test positivity rates always seem to

be too high.

To understand the relevance of these results, start by noting that suggested policy re-

sponses and their implementation (e.g. social distancing rules) will inevitably be inefficient

if we are not aware of the real number of active cases, and in which areas and age groups

these occur. Observing mortality rates or the number of hospitalisations and patients in

ICU are not real time measurements; they only provide an estimate of how many people

caught Covid-19 weeks earlier (and estimating the fatality rate is also challenging, Atkeson,

2020). This time lag is very important when trying to evaluate interventions. Without real

time data, measuring the effect of a vaccine will take months, on top of the time the vaccine

takes to have a medical effect. Understanding the full effect of other events on the disease,

like the Christmas holidays (which led to more interaction and possibly higher transmission)

1Replacing mass testing with polling may sound unusual, but it is in line with suggestions of using
statistical sampling to replace exhaustive counting, when the latter can be biased, as in a census. In the case
of the pandemic, it has even been argued that symptoms-based diagnosis should be used instead of PCR
testing (Cadegiani et al., 2021), because it is more informative.
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similarly takes months (see the influential cross country study on the effectiveness of phar-

maceutical interventions (NPIs), which uses death counts, lagging by several weeks, Brauner

et al., 2020). On the other hand, knowing the current number of actual cases, allows the

design of optimal policy response, and also provides a forward-looking estimate of hospital-

isations and mortality. Health systems get warning several weeks ahead, gaining invaluable

time for necessary adjustments.

Community testing, often conducted in the high street and in neighbourhoods, is widely

considered a useful tool to monitor incidence and trends. The ECDC, 2020 listed “[to] reli-

ably monitor SARS-CoV-2 transmission rates and severity” among five objectives of testing.

It also published weekly testing data and “positivity rates” by EU State (ECDC, 2021).

However, as we have argued, such testing cannot provide accurate estimates of Covid-19

prevalence, and the main problem is not related to typical issues that arise in population

sampling, such as sampling representative age groups (contrary to what some studies suggest

(Pearce et al., 2020)). We find in our data that the self-selection bias increases non-linearly

with waiting times and any other cost associated with testing. To make prevalence estimation

harder, the bias is time-varying, and also depends non-linearly on time varying parameters.

For example, when cases rise steeply, people might be more likely to want to test out of fear.

This leads to longer queues for testing, longer waiting times and a disproportionately larger

testing bias.

To summarise, using standard self-selection calculations and results from a large scale,

incentivised and controlled experiment, we formulate three main hypotheses:

1. Test-positivity is always inflated due to self-selection

2. The inflation factor is time-varying

3. As virus prevalence in the population increases, so does the bias in its measurement

(for reasonable prevalence ranges in the Covid-19 pandemic)

We validate our results comparing prevalence estimates from the REACT study in the

UK, to official test positivity figures. Our two predictions are strongly confirmed and we
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also find support for the hypothesis that the bias rises with prevalence.

Finally, we present an application of the testing bias to the much debated policy question

of school openings. We show that the testing bias can explain why the young do not show up

in simple case counts, while they are very likely getting infected (and possibly transmitting)

more than older people.

The possibility that infection rates in the untested population can be different than in

the tested subsample, has been raised (Manski and Molinari, 2021). The issue is treated

as a purely econometric inference problem however, with no reference to self-selection. In a

somewhat similar vein, (Greene et al., 2021) propose statistical nowcasting, but the accuracy

of both these methods is not as high as polling and detection of trend reversals is not possible

in real time.

Experimental methods with incentives have been used on virus testing before, in a seminal

paper to measure demand for HIV testing (Thornton, 2008). However prevalence estimation

was not the goal of that paper, and of course the diseases are different in several ways.

More generally, the existing literature does not offer much guidance on personal incentives

to test on a large scale. Should people be averse to learning they are infected, as information

avoidance models suggest (Golman et al., 2017), prevalence figures would be deflated due

to symptomatic people testing less that non-symptomatic ones. If, however, people do not

test unless they experience symptoms, as is a known case in medical literature (Oster et al.,

2013), this would lead to inflated prevalence figures due to non-symptomatic people testing

less frequently than symptomatic ones.

Why care about test positivity rates? These are currently widely used to evaluate the ef-

fect of the mass testing within a country (Mahase, 2020), to compare the effect of government

policies between countries (Haug et al., 2020), to build arguments about which age or socio-

demographic groups are most affected (Elimian et al., 2020), and generally as a “baseline

against which the impact of subsequent relaxation of lockdown can be assessed” (p2, Riley

et al., 2020). A biased prevalence estimate makes these comparisons at best uninformative
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(Middelburg and Rosendaal, 2020) - a problem to which we offer a solution.

Our approach is also relevant for past research based on historical data. For example, ma-

jor studies of policy measures to prevent spread of viral diseases rely on prevalence estimates

affected by the same type of bias (Adda, 2016).

Some studies rely on death rates instead of test positivity to evaluate effect of the policies

aimed to contain the pandemics (Dergiades et al., 2020). This measure does not circumvent

the problem of incomparability. Deaths are affected by harvesting and specifics of the health

system, so do not fit as a perfect proxy of prevalence for cross country comparisons. Likewise,

the infection fatality rates (IFR) are also subject to the testing bias. Whilst researchers

already raise concerns about methodological and econometric issues affecting IFR (Shen

et al., 2021), the bias we find cannot be addressed by the measures they propose.

The rest of this paper is organised as follows. Section 2 presents calculations of the self-

selection testing bias. Section 3 describes the experimental procedures to measure this bias.

Section 4 presents the experimental results and their implications regarding the prevalence

bias. Section 5 compares our debiasing solutions, partly with parameters derived from the

experiments, to field data. Section 6 presents an application to a common policy problem,

the evaluation of school openings, while Section 7 concludes.

2 Bias calculations

The aim of the calculations is to infer the percentage of sick people in the population from

the “random” testing in the field figures, as released by Health Agencies worldwide. The

problem is that testing is voluntary, which leads to selection bias. How large is this bias?

To start, some people believe they have symptoms, some do not: call them S(ymptomatic)

and H(ealthy). Note that the discussion below has to do with what people believe, not what

they actually have. Also, we distinguish between people believing they have symptoms and

those who do not, but the analysis readily extends to people having strong beliefs that they
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might be carrying the virus and those who do not.

Let the frequency of people who believe they have symptoms be ps, or just p, with (1−p)

being the frequency of people who do not think they have symptoms.

Of each group, some percentage turns out having the virus. Let vs be the virus prevalence

for those who believe they have symptoms, vh for those who do not.

Of each group, some percentage are willing to take the test (for a given waiting time

to take the test). Assume this only depends on symptoms, but not on actually having the

virus (this assumption is mostly innocuous, unless there is a very large number of people

in hospital). Let then ts be the percentage of people who believe they have symptoms who

actually take the test, and th for those who do not.

True prevalence is then

τ = psvs + (1− ps)vh (1)

The sample prevalence, also called test positivity throughout the paper (i.e. the virus

frequency in the sample population) φ, however, is given by the positive rate in the sample

(assuming that the test itself is perfect).

π = pstsvs + (1− ps)thvh (2)

Divided by the total sampling rate

m = psts + (1− ps)th (3)

Note that if ts = th = t, then π = t(psvs + (1− ps)vh) and φ = t(psvs + (1− ps)vh)/t =

psvs + (1− ps)vh = τ which makes sense; if testing propensities are equal, there is no bias.

If on the other hand the testing propensities t are not the same, then the sample is selected

leading to bias. Before we calculate the bias, express the propensities to test and be virus

positive, for the people who believe they have symptoms, as a multiple of the propensities

of those who do not: vs = avh, ts = bth vs = a vh, ts = b th . Then, using these equations,
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rewrite (1), (2) and (3).

τ = psvs + (1− ps)vh = apsvh + (1− ps)vh = vh(aps + 1− ps)

π = pstsvs + (1− ps)thvh = abpsthvh + (1− ps)thvh = thvh(abps + 1− ps)

m = psts + (1− ps)th = bpsth + (1− ps)th = th(bps + 1− ps)

Simplify the notation by writing p for ps and calculate

φ =
π

m
=
tnvh(abp+ 1− p)
th(bp+ 1− p)

=
vh(abp+ 1− p)

(bp+ 1− p)

Now, divide φ
τ

which yields the bias in the estimates

β =
abp+ 1− p

(ap+ 1− p)(bp+ 1− p)

For example, suppose the true symptoms prevalence is 10%, p = 0.10. Then β = (0.1ab+

0.9)/(0.1a+ 0.9)/(0.1b+ 0.9). Figure 1 illustrates the size of the prevalence bias for different

values of a and b. For instance, if a = b = 20, street testing is overestimating the virus

prevalence by about 5 times.

In order to debias the test positivity in the field, on simply has to deflate the field figures

by the estimated β, as long as p is known. If it is not, calculations are available upon demand

to get p from the data.

3 Experiment Design

To find the testing propensity parameters th and ts, we design an incentivised experiment

where we
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Figure 1: Bias in estimates for the true prevalence of 10%.(z-axis). X-axes: a (propensity-to-
be virus positive ratio between those who have symptoms and not). Y-axis: b (propensity-
to-test ratio between those who have symptoms and not).

1. Elicit hypothetical willingness to wait (WTW) to take a rapid test for Covid-19, con-

ditional on (i) feeling healthy, (ii) having flu-like symptoms, (iii) having Covid-19 like

symptoms.

2. Elicit real WTW to gain a voucher for a free rapid test for Covid-19.

3.1 Experiment data

Data collection took place over a week, from 11 till 18 December 2020. The majority of

the responses were collected online, via the QualtricsTX platform. To enable greater rep-

resentativeness of the sample, 94 responses (16%) from elder people (median age = 63) were

collected using phone interviews. Out of 608 participants starting the online study, 24 (4.7%)

dropped out mostly after the first few questions, 3 did not report age, resulting in the final

sample of 575 observations. Median age for the sample was 39 years (median for Greece

9



45.6), and the age distribution is shown in the appendix.

Subjects were recruited from the database paignia.net and invited to participate in a

study, answering a few question on behavior. Upon signing up for the experiment, they and

signing a consent form, the participant was first asked about general and Covid-19-related

health. We then elicited hypothetical willingness to wait (WTW) to take a rapid test for

Covid-19, conditional on (i) feeling healthy, (ii) having flu-like symptoms, (iii) having Covid-

19 like symptoms. For all three hypothetical scenarios, the test was being offered by the

national health authority (EODY) while the participant was walking down the street (this

is a procedure actually happening and discussed on popular media, so they should be well

familiar with it). The hypothetical location of the participant was chosen to eliminate the

(hypothetical) travel costs and reliability-related concerns. After eliciting the hypothetical

WTW, we asked the subjects several control questions, including exposure to Covid-19 risky

environments (e.g. taking public transport or working fate-to-face with many people) and

socio-demographics. After completing the compulsory part of the study, the participants

were randomly allocated to one of the two treatments. In treatment Test, the participant

would be offered a 1/30 chance lottery for a voucher for a home-administered Covid-19 test,

worth ¿80 at the time of the study2. In the baseline treatment Book, the participant would

be offered the same 1/30 chance lottery for a voucher for the local large-scale bookshop chain

(“Public”), which we also set to ¿80 value, for comparability3. Crucially, the participant

had to complete a real-effort task to enter the lottery, and we made it clear that the part

was optional and would only need to do it if they wanted to enter the lottery for the prize.

Participants were also reminded that they could stop the waiting task and leave at any

moment.

All 575 participants completed the hypothetical elicitation and the control questions (left

part of Figure 2).

2For both prizes, the delivery was guaranteed within next 36 hours.
3Evidence shows that people tend to value a high stakes lottery much higher than a certainty equivalent

of its expected value (Kachelmeier and Shehata, 1992)
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As was partly expected, a substantial part of the sample (n=174) did not continue to the

optional task. A major part of it (n=78) was the elder people subsample. We are not very

concerned that the inconvenience of the waiting task over the phone was the issue, since the

participants came from the sample that had participated about a month ago in an unrelated

study involving a real effort task over the phone. For n=38 participants, a software glitch in

Qualtrics, in the first five hours of the study resulted in missing recording of the treatment

allocation, so we had to drop their data despite completion of the optional task.

Figure 2: Experimental Flow.

The participants then read the description of the optional task. They learned that it

involved waiting in front of their screen for some time (target) that would be revealed in the

next screen, and the lottery draw for the prize would take place right after the wait. They

also learned that to ensure that they are waiting, a button would appear at random times

and they would need to press it within 4 seconds to avoid being disqualified. Among the 303

participants who read the description of the optional task, 241 continued to the next screen

which revealed the waiting target. At this stage, they were randomly allocated to one of

the four Wait target conditions {300, 600, 900, 1200} seconds. Upon learning the Wait time,

further 59 participants dropped out instantly (median target time 900 seconds). Among the

241 waiting, 69 dropped out before completing the target (median Wait = 900 seconds). In

total, 172 participants completed the waiting target (median Wait = 600 seconds).

Upon completing the waiting task, each participant was randomly allocated to one of the

four Cash conditions, {¿20,¿35,¿50,¿65}. The participant was offered a choice to enter the

11



lottery for: (a) the original prize (Book, Test), or (b) the displayed Cash amount. Out of the

172 participants, 112 chose to swap the original prize for the cash amount, whilst 60 chose

to stay with the original prize (median cash value ¿35 for both). A total of 7 participants

won the lottery.

4 Experiment Results and Prevalence Bias

4.1 Impact of self-selection on the bias in prevalence measurement

4.1.1 Hypothetical

We find heterogeneity of waiting times between the age groups, driven by the self-assessed

symptoms (Table 1). Younger people tend to behave similarly to elder people, while people

between 30 and 50 are willing to wait the least time. This can be reconciled with the fact that

this age group has the highest employments rates and possibly family obligations, leading

most probably to the least available free time.

Age group WTW— No Symptoms WTW — Flu Symptoms WTW — Covid-19 Symptoms N

Under 30 0.156 0.391 0.641 192
30-50 0.094 0.279 0.558 222
50+ 0.161 0.373 0.596 161

Table 1: Proportions of respondents reporting willingness to wait for a Covid-19 PCR test
for over half an hour

Table 2 shows the testing bias, as calculated by the ratio of willingness to test between

people with symptoms and those without. The figure ranges between 1.5 and 42, depending

on the age group and waiting times. People under 30 with symptoms are 1.5 times more

likely to test when there is no waiting time, compared to those without symptoms. This

figure increases to 2.74 when there is a short wait of 5-15 minutes; 4.10 with a 15-30 minute

wait; 11.67 with a 30-60 minute wait and 42 with a 1-2 hour wait. The ratio for 30-50 year-

olds ranges between 1.50 for no wait and 17.33 for a 1-2 hour wait. For over 50-year-olds,
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the ratio ranges between 1.66 and 9.4. The symptom-conditional difference is significant at

p < 0.01, see appendix for details.

Age group No wait/ Immediate 5-15 min 15-30 min 30-60 min 1-2h over 2h N

Under 30 1.50 2.74 4.10 11.67 42.00 42+ 192
30-50 1.50 3.29 5.91 9.57 17.33 17.333 + 222
50+ 1.66 2.67 3.69 7.62 9.4 9.4 + 161
Total 1.54 2.91 4.46 9.43 15.67 15.67 + 575

Table 2: Bias (ratio of people with Covid-19 symptoms to people with no symptoms) by
hypothetical waiting time for rapid test, N=575

The propensity to test bias, translates to a biased virus prevalence estimate β, according

to the calculations in Section 2. The prevalence bias is also time varying, even with no

changes in testing strategies. It depends, crucially, on symptom prevalence, which, given the

exponential spread of Covid-19, can change drastically in a short period of time. This means

that the estimate depends on symptom prevalence, but the bias itself also depends on it –

so the bias is time variant.

4.1.2 Incentivized Elicitation

Apart from waiting times, self-selecting into testing also depends on the cost associated with

it (if applicable – costs can vary from time to monetary value, travel etc). We test whether

the hypothetical willingness to wait to take a Covid-19 test correlates with the incentivized

real waiting time for the 1/30 lottery and find a significant positive relationship between the

two (p < 0.05).

Also, we measure willingness to pay for the test (see Table 5 in the appendix). Of those

who won a test voucher, 83.8% swapped it for cash, as opposed to 48.9% of those who won

the book voucher, indicating that the majority of subjects would not be willing to pay to

receive a test.

Note that there were too few people reporting no symptoms to be able to compare the

willingness to pay of people with symptoms, to those without. The scope of this study is
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to measure and correct the bias for free tests subject to different waiting times, and further

experiments are needed to explore the effect of other monetary and non-monetary costs.

4.2 Impact of the Bias on Prevalence Estimates - Calculations and

Demographic Simulation

We have launched an online calculator that provides estimates on the testing bias (available at

http://georgana.net/sotiris/task/atten/covid.php ), as described in Section 2. The estimates

on the testing bias depend on (a) the percentage of tests yielding positive results; (b) the

percentage of the general population that reports symptoms; (c) the relative likelihood of

having Covid-19 for those with symptoms compared to those without symptoms; and (d)

how more likely are people with symptoms to self-select into testing than those without

symptoms. According to our methodology, it is possible to calculate these figures and thus

estimate the bias. Parameter (a) is provided by the results of community testing; (b) is

provided by surveying; (c) can be obtained by asking people a simple question before testing

them for Covid-19; and (d) is provided by surveying.

A simple example is the following: Assume community testing led to 10% positive results,

and 5% of the population reported symptoms. Without waiting time, if those with symptoms

are 5 times more likely to have the virus than those without symptoms, then the results of

community testing exaggerate by 27.71%, and the true prevalence in the population is 7.83%

(instead of the reported 10%). At a 30-60 minute waiting time, the bias increases to 106.95%,

meaning that the true prevalence in the population is 4.83%.

To further illustrate our results, Figure 3 depicts our best estimate of the virus preva-

lence bias, i.e. the ratio between reported prevalence and actual, depending on symptoms

prevalence and waiting time, for the three age groups.

Based on these estimates, we can simulate how different demographic structures would

affect the prevalence bias. In Figure 4 we depict the results from 3 million draws from the

plausible parameter space (we assume symptoms prevalence of 5%, and allow the testing bias

14

http://


Figure 3: Best estimate of the virus prevalence bias: The ratio between reported prevalence
and actual, depending on symptoms prevalence and waiting time, for the three age groups.

parameter to vary uniformly within the 95% confidence interval gained from the experiments)

applied to three countries, with different demographic structures: Nigeria (with one of the

youngest populations globally), Italy (heavily ageing population) and the USA (between the

two extremes). The simulation shows that demography matters: a young country like Nigeria

could have a substantially higher prevalence bias than Italy. However, it is also clear that

the waiting times are more important than demographics. Lowering waiting times would

result in a low bias for all countries.

5 Debiasing vs Polling for Prevalence Estimation: Val-

idation using Existing Data

Debiasing the field prevalence numbers can be performed using our methodology, as long as

there are good estimates for four parameters, namely (a) the percentage of tests in the field
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Figure 4: Simulation of the effect of different demographic structures on the prevalence bias.

yielding positive results; (b) the percentage of the general population that reports symptoms;

(c) how more likely are people with symptoms to be carrying the virus than those without

symptoms; and (d) how more likely are people with symptoms to self-select into testing

than those without symptoms. Obtaining estimates for the above parameters is of varying

difficulty: (a) is obtained in any country doing “random” street testing (it is important to

keep track of important factors, such as waiting times though), (b) can be estimated with

standard polling and (d) can be estimated with our experimental methodology. Estimating

(c) would require asking subjects at testing stations to self-report their symptoms before

testing.

We suggest however a novel, more economical and accurate alternative for prevalence

estimation. The important parameter to estimate is the probability of having covid-19

conditional on having symptoms, and on not having symptoms, similar to parameter (c)

above. This can be done by asking a simple question at existing testing sites (indeed we
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have ongoing parallel work underway to obtain these estimates in cooperation with testing

centres in the field). These parameters could be country-specific and time-variant, but we

do not expect changes to be too fast. Obtaining a few estimates in each virus season could

suffice, and this estimate could be used for many similar countries. The next step is unusual

in the context of the pandemic: poll a representative sample regularly, to obtain symptoms

prevalence. A common misunderstanding involves the argument that laymen cannot measure

their symptoms properly. This is not a bug, but a feature of our procedure. Since the testing

bias depends on self-reported symptoms, we need to condition on subjects believing they

have symptoms, not on actually having them. Using both steps above can yield accurate

prevalence estimates in real time at very low, comparatively, cost.

In the following we try simulate the novel polling method and compare to data that are

as accurate as possible. That is, we need a benchmark figure to approximate true prevalence,

derived by a study that does not suffer as much from the self selection bias. We use the

REACT study in England (REACT, 2020) and the ONS Infection Survey, which are to our

knowledge the two studies, that likely do not suffer from an inordinately high testing bias.4

REACT is done on a large sample of all ages and locations, and importantly non response

is relatively low5

REACT has been conducted in eight waves, to date. Two of the waves have been pub-

lished in two sub-waves, yielding 10 different observations (we match the ONS data to these

dates). The data consists of non-overlapping random samples of the population of England

at lower-tier local authority level (LTLA, n=315) that were invited to take part in each

round of the study based on the National Health Service list of patients.

4Both studies are aiming to test large, representative samples at home. An important difference is that
REACT sends testing kits to homes, and participants can choose to self-test and send back the results, while
ONS sends health workers to test citizens at home. It is not clear without further research which method
leads to a lower bias.

5The overall conversion rate from invitation letter to registration for a swab kit was 23.8% (1,474,824
registrations from 1,474,824 invitations sent), but this is not the main problem, because symptoms at this
stage would not last for the duration of the study. Self-selection leading to bias can happen when people
receive swabs and decide to test or not. The average proportion of swabs returned was 74.6% (1,100,270
swabs returned from 1,474,824 kits sent). There was some variation in response rates between rounds.
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For those registering to take part, a swab kit was sent to a named individual with a request

to provide a self-administered throat and nose swab (or for a parent/guardian to obtain the

swab for children aged 12 years or younger). The participant was requested to refrigerate the

sample and order a courier for same or next day pick-up and transporting to the laboratory

for RT-PCR. There is no obligation to take the test at any stage of the process. Participants

then completed an online questionnaire (or telephone interview) giving information on history

of symptoms, health and lifestyle. The publicly available data includes the raw figures on

tests and outcomes, as well as unweighted prevalence estimates and estimates weighted to

be representative of the population of England as a whole.

Figure 5: Estimate of the prevalence bias in field testing. Test positivity divided by the best
prevalence estimate using REACT and ONS data.

We focus on the weighted prevalence figures, as the most accurate and take the simple

average of the two surveys to get our best prevalence estimates. The number of daily tests is

publicly available, along with the number of tests being positive, yielding test positivity. We

divide test positivity by the best prevalence estimate to obtain an estimate of the prevalence

bias in field testing.
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From our calculations and the experiment, three main hypotheses follow regarding the

prevalence bias:

1. Test-positivity is always inflated due to self-selection, meaning the prevalence bias is

large.

2. The prevalence bias is time-varying

3. As virus prevalence in the population increases, so does the bias in its measurement

(for reasonable prevalence ranges in the covid-19 pandemic)

As presented in figure 5, in the 10 different subwaves of the study, the estimated preva-

lence bias indeed is positive, substantial, but also highly variable, ranging from 3.8 to 23.6,

thus confirming our two main predictions. Apart from the first waves, during which the

testing strategy was changing, complicating comparisons, it seems there is a weak effect for

the bias to be rising in prevalence. A proper test of this hypothesis would require more waves

and a constant testing strategy.

In the next graph we compare the best estimates of positivity with the two methods

used currently to proxy prevalence, field positivity and case counts (as a percentage of the

country’s population), along with the our two new methods, the debiasing estimate and a

simulation of the polling method.

We simulate the polling method by taking symptom conversion parameters, as published

in REACT, but from the immediately preceding wave. The symptoms prevalence numbers

we use are then from the current wave. As long as agencies can get a polling estimate that

is similarly accurate to REACT, this simulation places a lower bound on the accuracy of the

polling method.

We find that the polling method is consistently closest to “true prevalence”, while the

debiasing estimate is further away and still inflates actual prevalence to some extent. As

shown before, field positivity is an order of magnitude higher in most waves, while recorded

cases are underestimating prevalence by at least an order of magnitude. Even assuming that

cases sum up over several days to 10 times the daily rate, this estimate is still many times
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Figure 6: Comparison of the various prevalence estimates, in percentage of the UK popula-
tion.

lower than estimated prevalence. Also note that all traditional methods are very variable,

for example recorded cases increase almost fivefold when true prevalence doubles. Again,

this is in line with our bias calculations.

A final note on the usefulness of the REACT and ONS methods: the marked difference

between their prevalence estimates and common field test positivity, is driven by the fact

that the monetary and non-monetary cost of testing happen are much lower in REACT and

the ONS Infection Survey. Crucially, participants were able to administer the test and report

symptoms without leaving the house. While this is a step in right direction, other significant

non-monetary costs need to be mitigated in order to address self-selection bias. For example,

for both studies, the physical unpleasantness of conducting the test may still make those not

experiencing symptoms more likely to test. While it is possible to reduce other non-monetary

costs of testing, we believe that making large-scale regular self-reporting of symptoms easy

would be a more effective step towards achieving accurate prevalence estimates.
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6 Application: Do Open Schools Lead to Transmis-

sion?

Closed schools cause problems to working parents, besides hindering the education of young

pupils who reportedly find it hard to follow remote teaching. Studies have not yet yielded

a clear, conclusive answer regarding the epidemic cost of school opening though and the

debate remains heated.

Figure 7: Recorded case positivity by age, vs best estimates.

Understanding the testing bias and how it varies by age group, allows us to reconcile the

various pieces of evidence and solve existing puzzles. Looking at case counts, children and

youngsters up to 19 years of age, seem not to be major carriers of the disease. Indeed, in a

sample of 16 European countries for which data were available, children and teenagers up to

19 are always underrepresented among confirmed cases.6 Authorities around the world have

used this as an argument that school opening is relatively harmless.

However, we know from our experiment that young people are much less likely to test.

6The sample includes Belgium, Czechia, Denmark, Estonia, Finland, France, Greece, Germany, Italy,
Latvia, Netherlands, Norway, Portugal, Spain, Sweden, Ukraine. The largest percentage was found in Finland
and Norway, above 15%, while the lowest were in France, Greece and Spain, at below 7%. For comparison,
the population share of 0-19 year olds in a fairly typical country like Germany is 18.7%.
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While absolute testing propensities are similar, they are very different between those with

symptoms and those without. Combined with the fact that the young have a much lower

symptoms prevalence (Qiu et al., 2020; Kelvin and Halperin, 2020), they test much less

frequently.7

As a consequence of the testing bias, the young are underrepresented in testing, meaning

their cases are underreported. Indeed, looking at the data from the ONS Infection Survey

in the UK, high-school children seem to have the highest prevalence of all (see figure). This

example illustrates the importance of the selection-bias: how it complicates comparisons of

prevalence in different age groups and can lead to wrong, in this case missing, pandemic

prevention interventions.

7 Discussion

Using an incentivised online experiment, we found that the probability of taking a Covid-19

test for those who have symptoms (or believe they are more likely to have caught the virus)

is many times higher than those who do not. In our sample, this testing propensity bias

ranged from 1.5 times (for people under 30 years with no waiting time) to 42 times (for

people under 30 and a 2-hour waiting time). The bias becomes larger with longer waiting

times, and any cost associated with taking the test. Testing stations cannot readily correct

this by oversampling (i.e. selecting people without symptoms to test).

A person’s age also influences the testing propensity bias, which means that different areas

(or countries) will have different biases depending on the age composition. Furthermore,

there have been reports of very long waiting times in some cases of community testing,

which greatly exacerbates the bias and makes comparisons even within a country hard.

Lastly, even keeping everything else constant the bias depends strongly on the actual virus

prevalence. All these effects combined mean the bias is very likely to be varying across space

7Additonally, there seem to be reasons strictly related to the test itself that contribute to bias, due to
the the under-detection of Covid-19 positivity in children, compared to that of adults (Dattner et al., 2020).
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and time.

Our findings imply that virus positivity results from community testing sites are heavily

biased. Contrary to conventional wisdom in the health policy community that suggested the

bias would be, if anything, downward, our results suggest that prevalence is inflated by up

to 5 times, even if tests are not costly.

We recognise the importance of giving people the opportunity to test, as this identifies

positive cases, thus allowing them to self-isolate and stop spreading the disease. If the goal

of street testing is just to allow random people to have a quick and free test, then this

possibly meets its goal. Note, however, that random testing is not efficient, economically,

or epidemiologically: subsidising tests specifically for populations with a high risk of getting

infected and infecting others would probably save more lives at lower cost (say, tests for

young people working in service industries and living with their parents). These questions

remain open for future research.

What we have shown is that “random” voluntary testing is not really random. As such,

it does not provide accurate information on disease prevalence, which is important to design

and implement urgent policy responses to the pandemic, in terms of type, intensity and

geographic area. Since voluntary testing is always biased, aggregate results on prevalence

should be corrected. We have explained a method to do such debiasing. Note that debiasing

can be useful to get better estimates of prevalence in real time, but also to correct the past

time series that are used to estimate and calibrate many models related to the pandemic.

The object of such studies ranges from the effectiveness of measures against the pandemic

(Brauner et al., 2020; Hsiang et al., 2020), to health outcomes and economic effects. Fur-

thermore, the probability to test is recognised as an important parameter in macroeconomic

models evaluating economically optimal lockdown strategies (Alvarez et al., 2020),

Our methodology is not limited to correcting the results of community testing. We

showed that the number of confirmed cases reported daily is also biased, strongly downward

in this case. People might not test because of costs, or the inconvenience of going to a testing
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site, or even due to being afraid of losing income. According to our results, more than 85%

of the people who are not feeling any symptoms, would not wait more than 30 minutes (a

likely time in many street testing procedures) to have a test, even if it is provided free of

charge. For people feeling symptoms the estimated percentage of non-testers is still about

40%. These percentages rise even further when tests have a non-negligible cost to the citizen.

Using polling results from a representative sample can correct the error both in recorded

cases and field test positivity. Our proposed method is more accurate than these traditional

proxies. Moreover the polling method is not costly, and does not require an extraordinary

testing capacity, which means it can be used daily, allowing real-time prevalence estimation

in myriads of communities worldwide.

The REACT study in the UK (along with the ONS Survey) is an interesting special case

of large-scale community testing on a nationally representative sample. The authors claim

that this sample is truly random. While we use REACT data as the best estimate we have,

our experimental results suggest the sample might still not be truly random. Even for people

taking a free test at home (compare to the no waiting time condition in the experiment),

a substantial testing bias exists. Importantly, REACT is also very expensive to run, while

simultaneously less timely than our polling proposal. REACT has been done monthly or

less often, while our procedure can be run daily.

This paper also contributes to the literature on testing regimens (Mina et al., 2020).

Mass testing, extending to a very large part of the population, is useful as it can provide

more accurate figures, and also identifies positive cases. It has been used, among others,

in Liverpool, Slovakia and South Korea (Pavelka et al., 2020; BBC, 2020; Bloomberg, 2020;

Brauner et al., 2020). However, mass testing is extremely expensive, and might be infeasible,

especially at frequent intervals, due to capacity and technical constraints.

In the absence of mass testing, obtaining unbiased prevalence estimates is of paramount

importance for health and the economy. Underestimating disease prevalence can trigger

inadequate measures and further spread of disease, while overestimating can be detrimental
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to economic activity. We thus urge policy makers to redesign “random” testing as a matter

of priority in the effort to tackle the pandemic.

As a final note, our methodology is applicable to the prevalence measurement of any epi-

demic, when carriers have informative private information about their health status. Fight-

ing disease is hard, even without the added complication of not knowing the location and

magnitude of the fight. Our work offers tools to measure prevalence in real time. Further

work is needed, to estimate specific selection-bias parameters for every disease, as they are

necessarily related to the health burden and life expectancy reduction caused by the specific

pathogen.
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Appendix A. Supplementary Figures

Figure 8: Age distribution in the experiment (n=578) and in population of Greece (source:
populationpyramid.net).

Appendix B. Descriptive Statistics and Hazard Models

for the Experiment

Mean Std dev min max

Covid symptoms (0=no; 1=yes) 1.38 0.12 0 1
Age 40.404 15.302 18 84

Table 3: Summary statistics of sample demographics and symptoms.
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Hypothetical willingness to test (N=575)
By symptoms By waiting time

No Symptoms
Mean (SD) 2.96 (1.48) 2.39 (2.04)

Median (Min, Max) 3.00 (1.00, 5.00) 2.00 (0, 8.00)
Flu Symptoms

Mean (SD) 2.00 (1.20) 3.81 (2.26)
Median (Min, Max) 2.00 (1.00, 5,00) 4.00 (0, 8.00)

Covid Symptoms
Mean (SD) 1.46 (0.951) 5.19 (2.35)

Median (Min, Max) 1.00 (1.00, 5,00) 5.00 (0, 8.00)
By-symptoms key: 1: certainly yes; 2: probably yes; 3: maybe; 4: probably no; 5: certainly
no
By-wait-time key: : 0: would not wait at all; 1: would only take it if available immediately;
3: 5 - 15 minutes; 4: 15 - 30 minutes; 5: 30 - 45 minutes; 6: up to an hour; 7: 1 - 2 hours; 8
over 2 hours

Table 4: Summary statistics for hypothetical willingness to wait to take the test, by symp-
toms and waiting time.

Prize Not entered Dropped upon learning waiting time Dropped after some wait Swapped prize for cash Kept prize N

Book voucher 103 31 38 46 48 266
Test voucher 138 25 31 62 12 268

Bias 1,263 1,267 1.28 4.03 0.25 534

Table 5: Willingness to wait for a 1/30 chance of winning a prize. Number of subjects by
level of task completion and incentive (rows 1-2), bias by incentive (row 3).
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Table 6: Proportional hazard ratio for dropping out from (hypothetical) wait for a free
Covid-19 test, by age group and symptoms.

Dependent variable:

Odds of not waiting for Covid-19 test (Reference: Age 30-50 |No symptoms)

Under 30 |No symptoms −0.114
(0.099)

Under 30 |Symptoms −1.342∗∗∗

(0.109)

30-50 |Symptoms −1.279∗∗∗

(0.105)

50+ |No symptoms −0.107
(0.105)

50+ |Symptoms −1.403∗∗∗

(0.119)

Observations 1,150
R2 0.264
Max. Possible R2 1.000
Log Likelihood −6,177.707
Wald Test 351.360∗∗∗ (df = 5)
LR Test 352.721∗∗∗ (df = 5)
Score (Logrank) Test 388.121∗∗∗ (df = 5)

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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